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Abstract: Methane (CH4) and nitrous oxide (N2O) are the two most important non-carbon dioxide (CO2) greenhouse gases 
(GHGs) that play a critical role in shaping the global climate. Their concentrations in the atmosphere have been significantly 
increased by human activities. CH4 has contributed to an estimated 18–20% of post-industrial anthropogenic global 
warming and is 25 times more effective in absorbing radiation that atmospheric CO2. Its production and consumption in 
soils is affected by numerous factors including water table depth. Nitrous oxide is one of the key ozone (O3) depleting gases, 
constituting 7% of the anthropogenic greenhouse effect. On a molecular basis, N2O has 298 and 16 times higher global 
warming potential than that of CO2 and CH4 respectively over a 100-year period. Nitrous oxide is produced in soils by 
denitrification and nitrification processes. It is affected by many physical and biochemical factors such aeration/moisture 
status of the soil. 
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Introduction 

Greenhouse gases (GHGs) methane (CH4) and nitrous oxide (N2O) are the two most important non-carbon dioxide (CO2) 
greenhouse gases. GHGs in the atmosphere play a critical role in shaping the global climate, and human activities have 
significantly modified the concentrations of these gases. Methane (CH4) is the second most prevalent greenhouse gas from human 
activities after CO2 (Schimel and Gulledge; 1998; Van den Pol-van Dasselaar et al., 1999). It is emitted by natural sources such as 
wetlands (IPCC 2007), as well as anthropogenic activities such as biomass burning, rice production, fossil fuel exploitation, 
digestive processes in ruminants, sewage treatment plants and landfill use (Crutzen, 1991; Lelieveld et al., 1998; IPCC 2007). The 
concentration of CH4 in the atmosphere has risen from the pre-industrial level of 0.75 µmo1 mol−1 (Lelieveld et al., 1998; Schimel 
2000; Smith et al., 2003). The growth rate in CH4 concentration is changing considerably and the very large and interannual 
variations in CH4 concentration remain unexplained; thus present an important challenge to the research community (Fowler et al. 
2009; IPCC 2007). CH4 has contributed to an estimated 18–20% (Hütsch 2001; Knittel and Boetius, 2009; Zhuang et al., 2009) of 
post-industrial global warming (Brzeziska et al., 2012). Weight to weight, the comparative impact of CH4 on climate change is 
25 times greater than CO2 over a 100-year period, which means that 1 kg of CH4 is 25 times more effective in absorbing radiation 
as 1 kg of atmospheric CO2 (IPCC, 2007). A total of 600 Tg CH4 are estimated to be released to the atmosphere globally 
(Lelieveld et al., 1998; Smith 2005), with wetland soils, rice paddies and the raising of livestock contributing 70% of the 
emissions (IPCC 2007).  

After CO2 and CH4, N2O is the third most important greenhouse gas. It is naturally present in the atmosphere as part of the 
earth's nitrogen cycle, and has a variety of natural sources. In nature, it is emitted from soils and oceans. Nitrous oxide emissions 
from human activities include the cultivation of soil, the production and use of fertilizers, and the burning of fossil fuels and other 
organic material. Nitrous oxide is not stored in significant amounts through natural processes or actively taken out of the 
atmosphere. As a powerful GHG in the troposphere it contributes to ozone depletion in the stratosphere (Cicerone 1987). Its 
concentration in the atmosphere has increased from the industrial revolution level of 0.275 µmo1 mol−1 to the current level of 
0.320 µmo1 mol−1 due to emissions from different sources. It has been increasing at an average global concentration of 0.2 to 
0.3% in recent decades (Flessa et al., 1995; Conrad, 1996; Mosier et al., 1998a). Nitrous oxide molecules stay in the atmosphere 
for an average of 120 years before being removed by a sink or destroyed through chemical reactions. The impact of one kilogram 
of N2O on warming the atmosphere is 298 times than 1 kilogram of CO2 over a time period of 100 years (IPCC, 2007). The 
concentrations of CH4 and N2O in the atmosphere result from the balance between processes contributing to uptake and release 
(von Arnold et al., 2005). Together with CO2, they are considered the primary causes of global climate change (IPCC, 2007). 

 

Sources and sinks for atmospheric CH4  
    A source is any process or activity through which CH4 is released into the atmosphere. Both natural processes and human 
activities release CH4. Methane sink is a reservoir that takes it up from another part of its natural cycle. Methane has both natural 
sources such as wetlands, gas hydrates, permafrost, termites, oceans, freshwater bodies, non-wetland soils and other sources such 
as wildfires. Anthropogenic or human activities that produce CH4 include fossil fuel production and transport, livestock and 
manure management, rice cultivation, and waste management (i.e., landfills and the burning of biomass) (Crutzen 1991; Lelieveld 
et al. 1998). Estimated total global annual CH4 emissions from anthropogenic and natural sources are about 600 Tg CH4 yr−1 
(Lelieveld et al., 1998; Smith 2005; Whalen 2005; Prather and Hsu 2010). Major sources of CH4 include the ruminant animal 
population (about 15% of the calculated annual CH4 release), rice paddies (20%), gas loss during coal mining and oil production 
(14%), biomass burning (10%), and natural wetlands (24%) (Cicerone and Oremland 1988, Whalen 2005). 
    Soils are the most important biological sources and sinks for atmospheric CH4 (Le Mer and Roger 2001; Dutaur and Verchot 
2007). Methane is produced under water saturated conditions present in wetlands by anaerobic decomposition of organic material 
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by methanogenic bacteria (Lloyd et al., 1998; Hou et al., 2000; Yavitt and Williams, 2000). Methanogens are strictly anaerobic 
unicellular organisms belonging to phylogenetic domain Archea (Garcia 1990). Most methanogens are methophilic, able to 
function in temperature ranging from 20 to 40°C (Topp and Pattey 1997). Once CH4 is produced, it can be released into the 
atmosphere through any of the three following pathways: (i) diffusion of dissolved CH4 along the concentration gradient, (ii) 
transport via the aerenchyma of vascular plants, or (iii) release of CH4- containing gas bubbles, i.e., ebullition (Chanton 2005). 
Methane emitted from the soil to the atmosphere is the net balance between production and consumption controlled by 
methanogens and methanotrophs (Sundh et al., 1994; Chan and Parkin 2001; Dutaur and Verchot 2007; Chen et al., 2009). 
    Sinks for atmospheric CH4 were estimated to be 580 Tg yr−1 due to hydroxyl radicals (OH) oxidation and via microbial 
oxidation in soils (Whalen 2005). Methane’s reaction with hydroxyl radicals is often counted as methane sinks (Wang and Ineson 
2003), but technically, it does not result in methane storage or removal from the atmosphere. They initiate a series of chemical 
reactions by which CH4 becomes one of several non-greenhouse compounds that are then removed from the atmosphere through 
precipitation or another means.  
    Methane is consumed (oxidized to CO2) by methane-oxidizing bacteria (methanotrophs) (Singh and Tate 2007) in many soils 
which is the main CH4 biological sink in terrestrial ecosystems (Adamsen and King 1993; Sundh et al., 1994; Castro et al, 1995; 
Butterbach-Bahl et al., 1998; Roura-Carol and Freeman 1999; Smith et al., 2000; Sjögerten et al, 2007). This process simply 
exchanges one greenhouse gas for another. However, CH4 is much more powerful than CO2 as a GHG. Oxidation of atmospheric 
methane by methanotrophic bacteria in well-drained soils accounts for about 10% (Topp and Pattey 1997) of the global methane 
sink, that is about 22−100 Tg yr−1 (Smith et al., 2000; Castaldi et al., 2006; Dutaur and Verchot 2007). CH4 is also oxidized in 
wetland soils but at comparatively low rates in the interface of the soil before it is released into the atmosphere (Ding et al., 2003). 
An estimated 37% of atmospheric methane consumed in terrestrial ecosystems is oxidized in temperate and tropical forest soils 
(Steudler et al., 1989).  

 

Sources and sinks for atmospheric N2O  

    Land surfaces are the main source of atmospheric N2O; thus, changes in land-use practices modify soil emissions and 
influence N2O concentration in the atmosphere (Kroeze et al., 1999). It is estimated that roughly half of the global N2O emissions 
are anthropogenic (Davidson, 1991; Khalil and Rasmussen, 1992; Hutchinson, 1995; Prasad, 1997). Soils are the most important 
global sources of atmospheric N2O (Williams et al., 1992; Bouwman et al., 1993).  Nitrous oxide is produced by microbial 
processes of nitrification and denitrification (Regina et al., 1996; Bremner1997; Machefert et al., 2002; Mosier et al., 2004; 
Koponen et al., 2006) and dissimilatory NO3

− reduction to NH4
+ (Silver et al., 2001) in soils. The two microbial processes are 

controlled by environmental factors, cropping systems, soil management practices (Ellert and Janzen, 2008), inorganic or organic 
fertilization and by soil moisture content (Zou et al., 2007). Denitrification is an anoxic process that is important in producing and 
releasing N2O in saturated organic soils (Smith et al., 1998; Dobbie et al., 1999; Ruser et al., 2001), whereas nitrification or the 
oxidation of ammonium (NH4

+) or ammonia (NH3) to nitrate via nitrite (Bollman and Conrad 1998; McLain and Martens 2005) is 
important in aerobic soils (Wrangle et al., 2001). 
     Approximately 80% of the global N2O emissions from human activities are contributed by agriculture, more than half of which 
is released directly from agricultural soils and animal systems and the indirect emissions from soil through loss of nitrogen to 
aquatic system and atmosphere (Groffman et al., 1998; Mosier et al., 1998b; Kroeze et al., 1999; McMahon and Dennehy 1999; 
Gödde and Conrad 2000; Reay et al., 2004). Annual emissions from agricultural system amounts to 6.3 Tg N2O-N yr−1 (Mosier et 

al., 1998b). The increase in emissions from agriculture is primarily caused by increased N input into agricultural soils (Mosier et 

al., 1998b). The use of nitrogenous fertilizer has risen sharply worldwide in recent years. This is expected to increase further to 
meet the food demand of the growing population. Consequently, the emission of N2O from the soil would also increase 
(Sangeetha et al., 2009). 

 
 

Factors that affect methane fluxes 

Water table depth  

     Methane production and consumption in soils is affected by numerous factors. These include water table position (Moore and 
Roulet 1993; Roulet et al., 1993; Granberg et al., 1997; Tuittiala et al., 2000; Frenzel and Karofeld., 2000, Yang et al., 2006; 
Ding and Cai 2007) which determines the partitioning between aerobic and anaerobic zone in wetland sediments (Moore and 
Roulet, 1993).     The position of the water table influence methane emissions in a number of ways. The water table depth must be 
at a level where organic matter is within an anaerobic environment. If the water table is not at a level where organic matter is 
within an anaerobic environment, methane oxidation will occur (Freeman et al., 1993; Roulet et al., 1993; Martikainen et al., 
1995; Nykänen et al., 1998; Sundh et al., 2000; Minkkinen et al., 2002). Once a sufficient water table is met for methane 
production, changes in water table position will influence methane flux in two ways (Long 2006). First, a fluctuation in water 
table will either increase or decrease the anaerobic soil volume where methane production occurs. A higher or elevated water table 
will cause a larger soil volume for methane production, whereas a lowered table will cause a smaller soil volume for methane 
production. Secondly, fluctuations in water table depth will either increase or decrease the aerobic soil volume, where methane 
oxidation occurs. An increase in water table depth will increase the soil volume where methane oxidation occurs; whereas a 
decrease in water table depth will decrease the soil volume where methane oxidation occurs. With a higher water table causing a 
larger soil volume for methane production and a smaller soil volume for methane oxidation, an increase in water table position is 
commonly associated with an increase in net methane emission to the atmosphere (Verma et al., 1992). Conversely, a decrease in 
water table position will cause a decrease in net methane emission to the atmosphere (Moore and Roulet, 1993; Roulet et al., 
1993). Furthermore, the water table depth can reach a point where the level of oxidation exceeds production, and there is a net 
influx of methane to the ecosystem (Roulet et al., 1993). 
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Soil Temperature and substrate availability 

    In addition to water table, the production and consumption of methane is also influenced by soil temperature (Crill et al., 1988; 
Dunfield et al., 1993; Castro et al., 1995; Alford et al., 1997; Komulainen et al., 1998; Heyer and Berger 2000). Methane is 
produced by the anaerobic breakdown, or digestion, of organic material by methanogenic bacteria. The bacterial activity is closely 
related to temperature and different types of bacteria have adapted their activity to different temperature ranges. An increase in 
soil temperature can increase both CH4 production (Valentine et al., 1994; Zhuang et al., 2004) and consumption (Einola et al., 
2007; Visvanathan et al., 1999). Although increasing soil temperature influences both CH4 production and oxidation, it has been 
shown to increase net methane fluxes from peatlands (Alford et al., 1997; Crill et al., 1988; Hargreaves et al., 2001; Heyer and 
Berger, 2000; Macdonald et al., 1998; Sachs et al., 2008).  
   Methane fluxes increase with increased soil temperature, but results differ in the observed relationship between temperature and 
methane emissions. A linear dependence of methane generation at low temperatures has been reported in some studies 
(Kaharabata et al., 1998; Macdonald et al., 1998; Sharpe and Harper, 1999; Heyer and Berger 2000). Other studies report an 
exponential dependence of methane emission rate on temperature (Husted, 1994; Khan et al., 1997; Macdonald et al., 1998; 
Sommer et al., 2000; Hargreaves et al., 2001; Sachs et al., 2008; Wille et al., 2008).  Methane production and consumption rates 
are also influenced by substrate availability which drives carbon mineralisation (Svenson and Sundh, 1992; Whiting and Chanton, 
1993; Christensen et al., 2003; Strom et al., 2003) and net ecosystem exchange of CO2 (Joabsson et al., 1999, Dunfield et al, 
1993). The carbon substrates provide methanogenic microorganisms with molecules to metabolize in order to produce energy. 
 
Nitrogen fertilisation  
   Mineral nitrogen affects CH4 fluxes in many ecosystems (Steudler et al., 1989; Sitaula et al., 1995; Cai et al., 1997; 
Suwanwaree and Robertson 2005). Steudler et al. (1989) applied 120kg N ha−1 year−1as NH4NO3 and observed that CH4 
emissions were enhanced by 33%.  Suwanwaree and Robertson (2005) added N to a forest site at 100 kg ha−1 and observed a 60% 
increase in CH4 fluxes. The increase in methane fluxes from nitrogen fertilised soil has been attributed to nitrogen’s ability to 
inhibit CH4 oxidizing soil microorganisms (Van den Pol-van Dasselaar et al., 1999) or by changing the composition of the soil 
microbial community (Saari et al., 1997; Van den Pol-van-Dasselaar et al., 1999; Kähkonen et al., 2002). 
 

Land use change and Management 

    Land use changes such as converting forests and grasslands to arable land decreases the oxidation of CH4 (Dobbie and Smith 
1996;; Smith et al., 2000; Ball et al., 2002; Merino et al., 2004; Tate et al., 2007). A mixed deciduous forest in Scotland was 
found to consume 2.19 to 2.97 mg m−2 day−1, compared to 0.82 mg m−2 day−1 consumed in an adjacent cultivated land used for 
arable agriculture (Dobbie and Smith 1996). The decrease in CH4 consumption after land use changes has been attributed to the 
disturbance on the population and activity of soil microorganisms responsible for CH4 oxidation (Knief et al., 2003; Seghers et 

al., 2003; Tate et al., 2007). Soils than have been out of cultivation for a long time were found to  consume CH4 ten times faster 
than their recently cultivated counterparts (Willison et al., 1995). Drainage experiments conducted in peatland soils have shown 
that lowering the water table depth improve aeration on the peat surface and increases oxidation of methane (Roulet et al., 1993; 
Glen et al., 1993; Martikainen et al., 1995; Nykänen et al., 1995).  
 

Factors affecting Soil N2O fluxes 

 

Soil temperature 
    Nitrification and denitrification rates increase with increasing temperature (Granli and Bøckman, 1994; Skiba et al., 1998; 
Smith et al., 1998; Koponen et al., 2006). Soil temperature controls many biological processes in soils and in the case of N2O 
production; it may affect microbial processes by stimulating N2O producing soil microorganisms. Studies indicate that 
denitrification proceeds at temperatures as low as –4°C and that temperatures above 5°C are required for the rates to be significant 
are cited by Granli and Bøckman (1994). Temperature exerts more control over soil N2O production in soils that are not limited 
by soil moisture and substrate availability (Skiba et al., 1998; Smith et al., 1998).  However, lack of relationship between N2O 
emission and temperature has been observed in some studies (Willers et al., 1993; Sommer et al., 2000).  
 
Soil moisture and aeration  
    Soil-water content influences N2O emissions from all soil types. It influences the release of N2O from soil through regulating 
the reactions of oxidation and reduction (Bollmann and Conrad, 1998).  Soil moisture can directly or indirectly influence 
denitrification by providing a suitable environment for microbial growth and activity, preventing the supply of oxygen to micro 
sites by filling soil pores, releasing available C and N substrates during wetting and drying cycles and through provision of a 
diffusion medium through which substrates and products are moved to and away from soil microorganisms (Aulakh et al., 1992). 
It has been shown that after rainfall and irrigation, denitrification rate increases due to decrease oxygen diffusion into the soil 
(Ryden and Lund, 1980; Ruser et al., 2001). Therefore, the rate of N2O emission increases with increasing soil moisture content 
from air dry to field capacity (Sitaula and Bakken, 1993; Dobbie and Smith, 2001). 
    Oxygen inhibits denitrification (Knowles, 1982) and the effect of soil moisture on denitrification occurs through its control over 
O2 diffusion. The diffusion of oxygen in water is 1×104 times slower. Thus wet soils are more anaerobic with higher rates of 
denitrification and decreased nitrification. Denitrification can also occur in well-aerated soils in the presence of anaerobic micro 
sites (Müller et al., 1997; Russow et al., 2009). In soil incubation studies conducted in a laboratory by Goodroad and Keeney 
(1984) N2O production increased when soil moisture content was increased from 0.1 to 0.3 cm cm−3.  The process of nitrification 
is important in N2O emissions in well aerated coarse-textured soils with <60% water filled pore space (WFPS) (Skiba et al., 1992; 
Skiba and Ball 2002; Bollmann and Conrad 1998; Bouwman et al., 2002; Mexiner and Yang, 2004). However, fine- textured soils 
which are poorly aerated provide conditions that favour denitrification (Groffman and Tiedje, 1991; Dobbie et al., 1999). Thus 
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denitrification becomes a major source of N2O emissions at lower oxygen partial pressure (<0.5 vol. %) and higher WFPS (>60%) 
(Davidson, 1993; Scholefield et al., 1997; Bronson and Fillery, 1998; Khalil et al., 2002). The WFPS depends on the balance 
between the amount of water entering the soil from precipitation or irrigation and the combined effect of evapo-transpiration and 
drainage (Dobbie and Smith 2003, 2006). Poorly drained fine soils are likely to emit more N2O for a longer period than their well-
drained coarse textured counterparts (Groffman and Tiedje, 1989; Aulakh et al., 1991; Clayton et al., 1997; Dobbie and Smith, 
2003; Saggar et al., 2004). 
 

Soil pH 

    Soil pH is one of the regulators of microbiological processes that influence N2O production. Nitrification activity generally 
increases with soil pH (Bremner and Blackmer, 1981; Bramley and White, 1989). The optimal pH for nitrification is 
approximately 7 to 8 (Haynes, 1986). Soil fertilised with NH4

+ and incubated under aerobic conditions revealed that N2O 
production increased significantly with increasing pH up to about 8 (Wang and Rees, 1996). Although the critical threshold for 
nitrification is 5, it has been shown to occur at a soil pH of 4.5 due to acid-adapted nitrifier strains (Bouwman, 1990) which show 
that acidity also favours N2O production in soils (Martikainen and Boer, 1993). At soil pH above 8.2, nitrite accumulates in the 
soil, and is then reduced to N2O because competitive biological oxidation of nitrite by Nitrobacter is prohibited (Chalk and Smith, 
1983). Denitrification can occur over a wide range of soil pH values (5 to 8) (Weier and Gilliam, 1986; Ramos, 1996; Flessa et al, 
1998). 
 

Nitrogen fertilisation  

    The differences in N2O emissions between fertilised and unfertilised soils are particularly evident in soils which have low 
available mineral N (Castaldi and Aragosa, 2002; Rees et al., 2006). Denitrification and nitrification rate increases in nitrogen (N) 
fertilised systems (Klemedtsson et al., 1997; Flessa et al., 1998; Kaiser et al., 1998; Baggs et al., 2003; Weitz et al., 2001; Ruser 
et al., 2006; Bremer, 2007; Sangeetha et al., 2009) because N provides a substrate for production of N2O. The rate at which N2O 
is produced and emitted from N fertilized soil depend on the amount and type of N fertiliser, application rates and method of 
application, soil types and  environmental conditions (Granli and Bockman 1994; Castaldi et al., 2006). Cochran et al. (1981) and 
Hutchinson and Brams (1992) reported larger N2O emissions from soils fertilized with anhydrous NH3 than those that received 
fertilizer containing NO3

– or NH4
+. Sangeetha et al (2009) observed that nitrification is limited by the formation of NH4

+ from 
mineralisation under normal field conditions.  
    Mapanda et al. (2010) reported average emissions of 3.3−3.4 �g N2O-N m-2 hr-1 of N2O-N from cropped land on clay and sandy 
loam soils in Zimbabwe. The low fluxes could be attributed to low organic carbon in the soil (Castaldi et al., 2006), and high N 
uptake by crops which leaves very little N available for denitrification (Mapanda et al., 2011).  Atmospheric N deposition also 
increases N2O emissions (Brumme and Beese 1992; Butterbach-Bahl et al., 1998; Gundersen et al., 1998; Skiba and Smith 2000). 
Nitrous oxide emissions from forests that had received significant quantities of N deposition in the temperate zone of Europe were 
found to be 2 to 5 times more than in their counterparts that had received low deposition (Butterbach-Bahl et al., 1998). Brumme 
and Beese (1992) recorded N2O emissions of 5.6 kg N2O-N ha−1 year−1 from a beech forest in Germany that had received N 
deposition at a rate of 35 kg N ha−1 year−1. 
Land use and management  

    Drainage of fertile peat soils for agriculture and forestry in the boreal and temperate region increases N2O emissions (Kliewer 
and Gilliam 1995; Regina et al., 1998; Liikainen et al., 2002) by enhancing the rate of decomposition of organic matter 
(Updegraff et al., 1995) which increases N substrate. Any nitrogen lost through drainage, however, may be susceptible to loss as 
N2O (Reay et al., 2004). Mounding a silvicultural practice used to establish tree plantations in wet planting sites has a potential of 
inducing N2O emissions because it mixes or buries the litter and the organic layer beneath the mineral layer (Saari et al., 2004). 
This increases the organic matter decomposition rates (Mann 1986; Davidson and Ackerman 1993) which may release N 
(Vitousek and Matson 1985; Fox et al., 1986; Vitousek et al., 1992), thus enhancing the production and emission of N2O. The 
conversion of deforested land or grasslands to agricultural use can increase N2O emission when N fertilizers are used 
(Nyamadzawo et al., 2012). 
 

Conclusion 

    The atmospheric concentrations of CH4 and N2O have increased significantly during the past several decades due to 
anthropogenic activities. CH4 from soil from soil to the atmosphere is the balance between production and consumption. Methane 
emitted from the soil to the atmosphere is the balance between production and consumption by methanogens and methanotrophs 
which are affected by numerous factors that include; soil water table depth, soil temperature, soil moisture content, etc. N2O is an 
important constituent of the atmosphere because it is not only the dominant source of ozone (O3) destroying odd nitrogen in the 
stratosphere but also a greenhouse gas. The gas is produced by numerous processes in soils of which denitrification and 
nitrification are considered to be the most significant.  The emission of nitrous oxide from the soil is affected by moisture content, 
oxygen, soil pH, soil texture, temperature, fertilizer application etc. 
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