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Bare Soil Reflectance to Characterize Variability
in Soil Properties

M. MZUKU,1 R. KHOSLA,2 AND R. REICH3

1Department of Agricultural Engineering and Land Planning, Botswana College
of Agriculture, Gaborone, Botswana
2Department of Soil & Crop Sciences, Colorado State University, Fort Collins,
Colorado, USA
3Department of Forest, Rangeland, and Water Stewardship, Colorado State
University, Fort Collins, Colorado, USA

Remote sensing allows for the rapid and inexpensive acquisition of soil reflectance
data. Knowing what soil parameters have the greatest influence on bare soil imagery
will facilitate better use of remote sensing for precision crop management. The
objectives of this study were (i) to determine measured soil properties that are most
influential on remotely sensed bare soil reflectance and (ii) to select which spectral
band or combination of spectral bands is best for describing individual soil properties.
This study was conducted on three study sites located in northeastern Colorado. All
sites were in irrigated continuous corn (Zea mays L.) cropping systems. Remotely
sensed imagery was acquired by aircraft prior to planting. Soil samples were collected
and analyzed for bulk density, soil color (moist and dry), organic matter, organic
carbon, soil texture, and cone index. Principal component analysis (PCA) was per-
formed for the green, red, and near-infrared (NIR) bands of the imagery. Least-squares
regression analysis was used for analyzing relationships between remote sensing data
and soil data. Across study sites, the first principal components of the green, red, and
NIR bands were found to have significant statistical relationships with organic carbon
and sand, silt, and clay fractions. Individual spectral bands explained a significant
portion of the variability in soil moisture, moist soil color, dry soil color, organic
carbon, sand, silt, and clay. Results from this study support the use of remote sensing
for assessment of soil variability.

Keywords Bare soil, reflectance, variability

Introduction

Remote sensing of bare soil can potentially quantify soil information by recording the
electromagnetic energy reflected by the soil surface. The proportion of energy reflected by
a particular surface is due, in part, to the physical composition of the surface (Avery and
Berlin 1992). Ocular color variations observed on a bare soil surface are affected by soil
properties such as organic matter, soil texture, and soil moisture, to name a few (Hoffer
1978). Acquiring soil information using remote sensing is advantageous for precision
agricultural applications because the data collected are in digital format, are georeferenced,
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and provide complete coverage of the entire field. For these reasons, remote sensing data
can easily be input into a geographic information system (GIS) to be combined with other
GIS layers and/or to be statistically modelled. To fully exploit the utility of bare soil
imagery for precision agriculture, it would be advantageous to identify the soil properties
that are most influential on bare soil imagery reflectance.

Characterization of soil variability is of immense value to precision agricultural
practices. Many commercially employed methods, such as grid soil sampling, to char-
acterize soil variability are intrusive, costly, and unsuitable for precision agriculture
practices where characterizing small-scale spatial variability is paramount. Remote sensing
has been studied as a nonintrusive alternative to grid-soil sampling and analysis. Soil
reflectance has been shown in several studies to be significantly correlated with soil
organic matter (Page 1974; Krishnan et al. 1980; Stoner et al. 1980; Coleman and
Montgomery 1987; Coleman and Tadesse 1995). Soil moisture content has also been
shown to significantly influence the spectral reflectance in the 400- to 1100-nm wave-
length (Bowers and Hanks 1965; Skidmore, Dickerson, and Shimmelpfennig 1975; Lobell
and Asner 2002) as well as in the 1100- to 2500-nm wavelength (Lobell and Asner 2002).

Unlike organic matter and soil moisture, the relationship between soil texture and
reflectance has not been clearly established from in-field studies. Ben-Dor et al. (2003)
stated that soil albedo is affected by soil physical properties. For example, surface rough-
ness affects albedo; soils that have coarse surface textures are spectrally “rough” and
therefore reflect less incident radiation. Laboratory studies have demonstrated significant
relationships between soil texture and spectral reflectance; however, few studies have
shown any relationship between reflectance in the 400- to 1100-nm wavelength from aerial
imagery and soil texture. Horvath, Post, and Kelsey (1984) found that finer textured soils
generally have greater reflectance. In a more recent study, Ray et al. (2004) showed that
silt content is significantly correlated with certain spectral indices derived from IKONOS
imagery. Both studies suggest that particle-size distribution significantly affects aerial
reflectance. However, the degree to which soil texture affects aerial imagery remains
uncertain. Because remote sensing imagery has been shown to be useful as a basis for
precision nutrient management (e.g., Fleming et al. 1999; Khosla et al. 2002), we are
interested in determining the soil properties that affect the reflectance characteristics of soil
as detected by aerial remote sensing. The objectives of this study were (i) to identify
measured soil properties that are most influential on remotely sensed bare soil reflectance
and (ii) identify the spectral bands best suited for characterizing individual soil properties.

Materials and Methods

Study Sites

The study was conducted on three continuous maize irrigated sites in northeastern
Colorado. Study site I was a furrow-irrigated site while study sites II and III were irrigated
using center-pivot sprinkler irrigation systems. Study site I was mapped as having Ascalon
(fine-loamy, mixed, superactive, mesic, Ardic Argiustoll), Haverson (fine-loamy, mixed,
superactive, calcareous, mesic Aridic Ustifluvent), Otero (coarse loamy, mixed, super-
active, calcareous, mesic Aridic Ustorthent), Nunn (fine smectitic, mesic, Aridic
Argiustoll), and Olney (fine loamy, mixed, superactive, mesic Ustic Haplargid) soil series
(USDA 1980). Study site II was located on a field that was mapped as having Albinas
(fine-loamy, mixed, superactive, mesic Pachic Argiustoll), Ascalon (fine-loamy, mixed,
superactive, mesic, Aridic Argiustoll), and Haxton (fine- loamy, mixed, superactive, mesic
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Pachic Argiustoll) soil series (USDA 1981). These soils are characterized as being very
deep and well drained and have accumulated carbonates in the soil solum. The Ascalon
series occurs on upland positions and is formed from calcareous parent material. The
Haxtun series consists of eolian deposits that overlay buried soil, occurring in drainages
and depressions. The Albinas series is alluvial and occurs on fans and terraces. Study site
III was mapped as Valentine (mixed, mesic, Typic Ustipsamment) and Dwyer (mixed,
mesic, Ustic Torripsamment) series (USDA 1968).

Measurements and Soil Analyses

Remotely sensed bare soil imagery was acquired by aircraft on a residue-free, convention-
ally tilled field after field preparation and prior to planting. Spatial resolution of the
imagery was 1 m. Imagery was captured in three bands (green, red, NIR) using a
DuncanTech MS 3100 (Redlake MASD Inc., San Diego, CA). Geometric correction was
performed in ERDAS Imagine 8.6 using image-to-image registration with a root mean
square error less than 1 pixel for all images. Images were then radiometrically corrected in
ERDAS Imagine using the histogram minimization method (Chavez 1975).

Prior to planting, georeferenced soil samples were collected using a Giddings truck-
mounted hydraulic soil sampling probe. Georeferenced soil sample locations were deter-
mined using Farm GPS (Red Hen Systems Inc., Fort Collins, CO). A nonaligned systematic
sampling strategy with sampling density of 2.5 samples per hectare was employed to locate
the sample positions. Soil sample sizes were 33, 86, and 74 soil sample cores per field for
sites I, II, and III, respectively. ATrimble Ag 114 differentially corrected GPS unit was used
to navigate to the sample locations. Soil samples were collected from both the surface and
subsurface. Surface samples consisted of the top 10 cm of the sample core, while subsurface
samples were taken at 30-, 60-, and 90-cm soil depths. Soil samples were oven dried to a
constant weight. Bulk density of each sample was determined using the method of Donahue,
Miller, and Shickluna (1983). Soil color was determined for both moist and dry surface
samples using a Munsell color chart (USDA 1954); Schoeneberger et al. 1998). Organic
matter and organic carbon content was determined using the methods described by Nelson
and Sommers (1996). Soil texture was determined using the hydrometer method (Gee and
Bauder 1986). Cone indices were measured with an electronic cone penetrometer at soil
depths of 0, 5, 10, 15, and 20 cm.

Statistical Analysis

For objective (i), S-Plus (Insightful Corporation 2003) was used to run principal compo-
nent analysis (PCA) to compress the remote sensing data by reducing the number of
dimensions without much loss of information. The number of principle components will
be less than or equal to the number of original bands associated with the imagery. The
PCA transforms the data in such a way that the first principle component has the largest
possible variance, that is, it accounts for as much of the variability in the data as possible,
and each succeeding component in turn has the greatest possible variance, given that it is
uncorrelated with preceding components (Campbell 2002). To identify the measured soil
properties that are most influential in determining overall reflectance of the bare soil
images, first principal component (PC-1) was considered the response variable and was
regressed on all measured soil properties (predictor variables) using least-squares regres-
sion analysis (SAS Institute 2001).
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For objective (ii), we were interested in determining what combination of spectral
bands could be used to explain the variability in the soil properties measured in this study.
Each measured soil property was considered a response variable that was individually
regressed on each spectral band and combination of bands (predictor variables) using Proc
R-Square (SAS Institute 2001). Best-fit models were chosen based on a combination of
Akaike’s information criterion and the coefficient of determination. Models were further
evaluated using cross-validation. This technique is used to evaluate the predictive power of
a model; it utilizes the available data set for both training (model building) and testing
(model validation). Stone (1977) and Shao (1993) provide more detailed information on
cross validation procedures.

Results and Discussion

Soil Properties Affecting Imagery

The PCAwas performed on remote sensing data using the green, red, and NIR bands from
each study site. The first principal component (PC-1) explained 98 percent of the varia-
bility in the remote sensing data for all three study sites. Using regression analysis to
assess the relationships between measured soil properties and remote sensing, PC-1 was
regressed on all measured soil properties. Results of the regression analysis are presented
in Table 1. At study site I, results revealed that there was a significant relationship between
PC-1 and organic carbon, sand, silt, and clay. At study site II, it was found that significant
relationships existed between PC-1 and organic carbon, sand, silt, clay, soil moisture, and

Table 1
Coefficient of determination R2 associated with regressing
PCA-1 against measured soil properties; only soil properties

significant at P ≤ 0.05 are listed

Study site Soil property R2

I Organic carbon 0.20
Sand 0.34
Silt 0.39
Clay 0.30

II Porosity 0.07
Moisture 0.56
Organic carbon 0.52
Sand 0.25
Silt 0.42

III Bulk density 0.04
Moisture 0.15
Organic carbon 0.23
Sand 0.18
Silt 0.12
Clay 0.17
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porosity. At study site III, PC-1 was significant with organic carbon, sand, silt, clay, and
soil moisture. Of the three study sites, site II had the strongest relationships (i.e., more
variability explained) between PC-1 and measured soil properties, which may be because
study site II had pronounced variability in topography and therefore more variability in
soil properties across the field. Across study sites, PC-1 was found to have significant
statistical relationships with organic carbon as well as the sand and silt fraction. Of all soil
properties measured in this study, four soil properties (organic carbon, sand, silt, and clay)
had the greatest influence on the variability in reflectance as measured by remotely sensed
imagery. These results are encouraging with regard to site-specific management because
soil texture and organic carbon both have profound influence on soil productivity. It is
important to note that the sites used in this study had a wide range of soil types between
study sites. Although the sites were all located in the western Great Plains and had similar
relief, this study shows the utility and reliability of using remote sensing of bare soil to
assess in-field variability in organic carbon, and soil texture for precision crop
management.

Spectral Bands and Individual Soil Properties

Results of the all-possible regressions procedure are presented in Table 2. Overall, similar
trends were observed across all study sites. Remote sensing spectral bands were significant
in explaining the variability in soil moisture, moist soil color, dry soil color, organic
carbon, sand, silt, and clay at all sites (P < 0.05). These results were not surprising because
these soil properties (i.e., soil moisture, organic carbon, sand, silt, and clay) are known to
affect ocular color variation in bare soil. In the case of dry and moist soil color, remote
sensing imagery will logically detect variations in these two parameters, and hence a
discussion of the significance of these two soil parameters (dry and moist soil color) would
be redundant.

Study site II had the strongest relationships between soil properties and spectral
bands, with coefficients of determination as high as 0.72 (Table 2 and Figure 1). Scatter
plots of predicted versus observed values and histograms of the residuals are presented for
soil organic carbon and soil moisture from study site II (Figure 1). Results from study site
II along with results from the other sites are promising because they illustrate the utility of
bare soil reflectance for characterizing soil properties. Study site II exhibited more topo-
graphic variation than the other two study sites, which likely influenced the relationship
between soil reflectance and measured soil properties. Topographic variation will cause
differential solar reflectance (Campbell 2002). Remote sensing scientists often regard
topographic variation as a phenomenon that requires correction prior to any meaningful
image interpretation of the imagery is made (Riano et al. 2003). In this study, the
topographic variability likely enabled the image from site II to have greater expression
of soil properties.

Variability in bulk density, porosity, and cone index were not well explained by
remote sensing spectral bands. This does not mean, however, that these properties do
not affect spectral reflectance. On the contrary, these properties most likely do affect bare
soil reflectance. The poor relationships observed between spectral bands and bulk density,
porosity, and cone index are most likely because of the coarse spectral resolution (i.e., only
three bands: green, red, NIR) of the remote sensing platform used in this study. Perhaps
future studies will investigate the use of hyperspectral remote sensing for detecting
variability in these properties.
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Regression analysis of PCA-1 against soil properties and soil properties against
individual spectral bands both seem to suggest that soil texture (sand, silt, and clay),
organic carbon, and soil moisture are the most influential soil properties on spectral
reflectance in the visible and NIR regions of the electromagnetic spectrum and hence
these properties can be characterized using bare soil reflectance.

Conclusions

In this study, the relationships between measured soil properties and bare soil spectral
reflectance were investigated. The first principal components of three remotely sensed images
were regressed against several measured soil properties. Significant relationships were found
between the first principal component and organic carbon and soil texture. This finding is very
promising with regard to the use of remote sensing for precision agriculture. From our results
we conclude that both organic matter and soil texture are the primary factors affecting bare soil
reflectance for the sites used in this study. Regression analysis of individual soil properties
against remote sensing spectral bands indicated that remote sensing may be used for quantify-
ing soil moisture, moist soil color, dry soil color, organic carbon, sand, silt, and clay.
Furthermore, our findings increase our understanding of remote sensing bare soil in lieu of
intensive grid-soil sampling for characterizing variability of these soil properties.
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Figure 1. Scatter plots and corresponding residual histograms generated through cross validation for
soil organic carbon (a and b) and soil moisture (c and d) for study site II. An idealized line has been
superimposed on the scatter plots to aid in visual interpretation.
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