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ON A CLASS OF FINITE RINGS

Chiteng’a John Chikunji

Department of Mathematics and Statistics,
University of Zambia, Lusaka.

Abstract

In [7), Corbas determined all finite rings in which the product of any

two zero-divisors is zero, and showed that they are of two types, one of

characteristic p and the other of characteristic p*.

The purpose of this paper is to address the problem of the classification

of finite rings such that

(i) the set of all zero-divisors form an ideal M,
(i) M® = (0); and

(i) M2 # (0).

Because of (i), these rings are called completely primary and we shall

call a finite completely primary ring R which satisfies conditions (1), (ii)

and (iii), a ring with property(T). These rings are of three types, namely,

of characteristic p, p* and p®. The characteristic p? case is subd:vided

into cases in which p € M?, p € ann(M) — M? and p € M ~ ann{M),

where ann(M) denotes the two-sided annihilator of M in R.

0 Introduction

Throughout, all rings are finite, associative (but generally not commuta-

tive) and have an identity element, denoted by 1. Further, it is assumed that

homomorphisms preserve 1, subrings have the same 1 and modules are unital.
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We begin with a section of preliminaries, where we gather the required no-
tions about finite completely primary rings. In Section 2, we give a brief review
of the types of finite completely primary rings that have been classified in terms

of well known structures; see Raghavendran [9] and Corbas [6] and [7].

In Section 3, we consider rings with a certain property(T) and obtain some
elementary results concerning these rings. Section 4 describes rings with prop-
erty{T) and of characteristic p, giving a construction of these rings and proving
that this construction indeed describes them all and in Section 5 we consider
the problem of enumerating these rings. In particular, we give a method of de-
termining the isomorphism classes of these rings in the case where the maximal
Galois subfield lies in the centre. In Section 6, we consider the remaining cases,
namely, those of characteristic p? and p®, respectively. In the last Section, we
extend the problem of section 5 to these cases; that is, we give formulae for de-
termining the isomorphism classes of these rings in the cases where the maximal

Galois subrings lie in the center.

1 Preliminaries

For convenience of the reader, we shall gather in this section all definitions and
results which will be used in the sequel.

The following are the known results.

1.1 Let R be a finite ring. Then, there is no distinction between left and right
zero-divisors (units) and every element in R is either a zero-divisor or a unit.
(see Section 4 in [6)).

The following results can be found in [9].

1.2 Let R be a finite completely primary ring, M the set of all the zero-divisors
in R, p a prime, k, n and r be positive integers. Then

() IRl = p"";

(it) M is the Jacobson radical of R;

(iis) M™ = (0),

(iv) |M] = p=1)r,
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(v) R/M = GF(p"), the finite field of p" elements; and
(vi) charR = p* where 1 < k < n.

1.3 Let R be asin 1.2. If n =k, then R = Z,«[b], where b is an elzment of R
of multiplicative order p” — 1; M = pR and Aut(R) = Aut(R/pR). Such a ring
is called a Galois ring and denoted by GR(p*", p*).

1.4 Let R be as in 1.2 and let charR = p*. Then R has a coefficient subring R,
of the form GR(p*",p*) which is clearly a mazimal Galois subring of R. This

can easily be deduced from the main theorem in [3].

1.5 Let R be as in 1.2. If R; is another coefficient subring of R then there erists

an invertible element = in R such that R, = zR,z~! (see theorem & in [9]).
The following result is due to Wirt [13].

1.6 Let R be as in 1.2. Then there exist my,..., my € M and ¢y, ..., o) €
Aut(R,) such that

R=R,®@Rm &...® R,my (as R, — modules ),

mir, = rSimy, for all v, € R, and any 1 = 1,...,h. Moreover, oy, ..., o) are

uniquely determined by R and R,.

By using the decomposition of Ry ®z Rp in terms of Aut(R,) and the fact
that R is a module over Rg ®z Ro, one may obtain the proof of 1.6.

We call o; the automorphism associated with m; and ¢y, ..., o the associated

automorphisms of R with respect to R,.

1.7 Let R be as in 1.2 and let charR = p*. If m € M and p' is the additive
order of m, for some positive integert, then [R,m| = p*". This follows from the
fact that Rom = Ro/p'R,.

1.8 Let R be a completely primary ring and let R, be a maximal Galois subring

of R. Then, by 1.3, R, = Z,«[b). Let K, =< b > U{0}. Then, it is easy to

k-1
1 =0

A\ € K,. Since R=R,® Rom; & ...® R,my (by 1.6), it is easy to see that
M=pR, ®R,m; ®...0 Romy.

show that every element of R, can be written uniquely as 3 7, p'Ai, where
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2 Review of well-known structures

We briefly review the types of finite completely primary rings that have been
classified in terms of well known structures; see Raghavendran [9] and Corbas
[6] and [7].

Raghavendran attacked the problem by taking a finite completely primary
ring of order p"", and characteristic p* and considering the two extreme cases
k = 1 and k = n. For rings of characteristic p, he was only able to give complete
classification in two special cases:

(a) when M? = (0); and

(b} when M™~1 & (0) so that M has index of nilpotence n. In both cases,
the rings can be represented as rings of matrices over GF(p"). Corbas {7) has
also given a classification of rings of type (a), but, in fact, his work goes much
further and classifies all finite rings with M? = (0). These are of two types,
one of characteristic p, and the other of characteristic p?.

Completely primary rings with full characteristic p® have been of interest
for some years. Clark mentions in [3] that Krull worked with these rings as
early as 1924, and that Janusz rediscovered them in [8). Raghavendran has
classified these rings as quotients of polynomial rings. It is worth noting that
Raghavendran’s classification of these rings had already been discovered by both
Krull and Janusz, although their considerations have been less detailed. Indeed,
the terminology “Galois Rings” which Raghavendran uses for a ring of this type,
was introduced by Janusz.

In [9], one more type of completely primary rings is considered and a clas-
sification produced, namely, those completely primary rings of order p"", and
maximal ideal M of index of nilpotence n — 1. Raghavendran called them
near-Galois rings.

The only other completely primary rings for which a classification has been
produced are those finite rings with n zero-divisors and order exactly n?. Corbas
shows in [6] that there are exactly two types of these rings, one being of order
p?", and characteristic p {so that M? = (0)), and the other of order p?" and
characteristic p?, i.e. a Galois ring. So both of these types are included in the

classifications produced by Raghavendran.
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In summary, the types of completely primary rings that have beea classified
are:
(i) rings of order p"" and characteristic p* with M? = (0), for any ;
(i) rings of order p”” and characteristic p with M~ # (0);

™" and characteristic p®, i.e. Galois rings; and

(iii) rings of order p
(iv) rings of order p™" and characteristic p"~! with M"~! # (0); i.e. near-Galois

rings; for any prime p and positive integers n and r.

3 Rings with property(T)

In this section, we obtain some elementary results concerning rings with prop-
erty(T). Let R be a ring with property(T). Since R is such that M3 = (0),
then by 1.2 charR is either p, p? or p®. Hence, by 1.4, R contains a coefficient
subring R, with char R, = char R, and with R,/pR, equal to R/ M. Moreover,
R, is a Galois ring of the form GR(p*",p*), k= 1,2 or 3.

Let ann(AM) denote the two-sided annihilator of M in R, which is of course

an ideal of R. Because M3 = (0), it follows easily that M? C ann(M).

We know from 1.6 that R = R,®@R.m1®.. &R, ms, where m; € M, and that
there exist automorphisms oy, ..., ox € Aut(R,) such that m;r, = r3'm,, for all
ro € R, and for all i = 1, ..., h; and that the number h and the automorphisms
o are uniquely determined by R and R, Again, since M3 = (0), we have
that p?m; = 0, for all m; € M. Further, pm; = 0 for all m; € ann(M). In
particular, pm; = 0 for all m; € M2.

Let d > 0 denote the number of the m; € {m;, mz,...,my} with pm; #£ 0.
Since R= R, & Rom1 & ...® R,my and every element of R, can be written
uniquely as 2:‘;01 '), where A; € K,, and if |R| = p"", then, since |K,| = p",

it follows that
h+1 when charR=p

n=1< h+d+2 when charR = p®
h+d+3 when charR = p*.

Lemma 3.1 Let R be a ring with property(T) and let K = R/M. Then
M/ann(M) is a vector space over K.
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Proof It is easy to verify that M/ann(M) is a vector space over K on defining
scalar multiplication on M/ann(M) by
(r+ M) -(m-+ann(M)) =7 m+ann(M)

1

rée R, meM.

Proposition 3.2 Let R be a ring with property(T) and let K = R/M. If
dimg (M/ann(M)) = s, then dimg (M?) < s%.

Proof We prove this for the case where o; = idg,, for all ¢ = 1,...,h. The

general case follows from this.
Let ;, ..., Z, be a fixed K-basis for M/ann(M). Let ¢ € M2 Then

t
c= Zakbk; ak, bk EM,

k=1

for some integer t > 1. But

s s
ak22/\ikzi+/\k, bk=Z#jkIj+#k; Ak, Mik € K Ag, px € ann(M).

=1 J=1
Hence,
t s
¢ = Z(Z /\ikyjkz:,-zj)
k=1ij=1
s t t
= Z (Z Aikijk)ziT;; where Z/\,-kpjk € K.
1,7=1 k=1 k=1
Therefore, the products z;z; (i, j = 1, ..., s) generate M? over K. Hence,

dimg (M?) is atmost s%.
Corollary 3.3 If dimg (M/ann(M)) =1, then dimg{M?) = 1.

4 Rings of characteristic p

Let R be a ring with property(T) and characteristic p. In this case, K, is a field

F of order p” and by choice of b, every element of R may be written uniquely
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as a, + m with a, € F, m € M (see 1.8), and therefore any element of R may
be written uniquely as

h
a, + Za,-m.- (as, ai € F).

=1
Note that since M3 = (0) and M? C ann(M) with M? £ (0), we can write
{mlv ey mh} = {I], vy Ty Y1, o Yy 21, ...,Zt}

where 21, ..., ¢, E M —ann(M), y1, ..., ya €Eann(M) - M? and z;, ...,z €
M?. Accordingly, we write

{017 EEEE) Uh} :{Ull sy Ty Thy o TAy 91» ey 9!}»
where s +t + A = h, and by Proposition 3.2, 1 <t < s% and A > 0 Therefore

any element of R may be written uniquely as

s A t
a Y ozt ) Buyut ) Wk (%, o Bu, wEF).
i=1 u=1 k=1

Now consider the products z;z;, where z;, z; are the elements of M given

above. Clearly, z,z; € M?. Therefore,

t
Tz; = Zaszk, where af-‘j eF. (1)
k=1

But z; € M? is of the form
ZE = Zayb,,, a, b e M; v > 1.
v
But

s 3
ay, = Zﬁwm +y, b = Z'Yquj +y ., B, v €F, yl, y” € ann(M).
i=1 j=1

Hence,
s
= () Burl)Tizs; where Y il € F.
1,j=1 v v
Since zx (k =1, ..., 1) is a basis for M? over F, therefore ziz; (1, j=1, ...s)

generate M?2. Therefore, the coefficients in (1) form a matrix
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2 ¢
a5 a1y an

2 t

al, a a
12 %12 12

A= .
1 2 t
a!l a!! a!l
of row rank t. In particular, the matrices (af‘j) (k = 1, ..., t), which are

the t columns of the above coefficient matrix, are linearly independent over F.
Moreover, since for every | € {1, ..., s}, z; ¢ ann(M), it follows that there
exists a ;7 € {1, ..., s} such that zyz; # 0 or z;z; # 0. Or equivalently, for
every [ € {1, ..., s}, thereexists a k € {1, ..., t} and a j € {1, ..., s} such that
afj #0or afl #0.

Definition A set of s x s matrices (a}j), -+, (af;) with entries in F are compatible
if

(i) they are linearly independent over F'; and

(i) they are such that for every L € {1, ..., s}, there exists a k € {1, ..., t} and
aje{l, ..., s} such that af; # 0 or af, #0.

We next consider the automorphisms oy, 8¢; (i =1, ..., s; k=1,..., t). By

using the associativity of R which requires that

(ziz;)b = zi(zb), 1<i,j<s;

we have
¢
dodpn = (67)7way
k=1
t
= b79% Za:‘jzk.
k=1
Hence,
t
D ak b - 679z = 0.
k=1
But z;x (k =1, ..., t), are linearly independent over F, so that
a:‘j[b"" - 479 = 0,
forallk =1, ..., t. Hence, af; = 0 or b% = %% If af; # 0, then b%* = b

and since b is a primitive element of F', 8 = oio;. Since the columns of matrix
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A are linearly independent, they are, in particular, non-zero and sc for every
k=1, ..., t there exist an a ;é 0 and hence 8¢ = o;0;. So the o;’s determine

the 8¢ ’s.

Therefore the multiplication in R is now given by

s A t 3 A t
(oo + 3 izt D Buv + D wean) (o4 Dozt 3 B+ 3 o)
i=1 u=1 k=1 =1 u=1 k=1

8 t
= @00, + Y _laoa; + aila,)” )z +Z oBy + Bula)) Jyu + D [oomet
=1 k=]
(@) + Z afjoq(a;)” ]z
,J=1

Thus, up to isomorphism, the ring R is given by t compatible matrices Ax = (afj)

of size s x s, and by automorphisms a;, 7, (i =1, ..., 5; p=1, .., A).

We shall call the compatible matrices Ay the structural matrices of the ring

R, and if A is a singleton with element a, we shall call a the structural constant

of R.

We can now give the following:

CONSTRUCTION A

Let F be the Galois field GF(p"). For some integers s, t, A with 1 <t < s?,
A>0,let U, V, W be s, A, t -dimensional F-spaces, respectively. Since F is
commutative we can think of them as both left and right vector spaces. Let (af;)
be t compatible matrices of size s x s with entries in F, {0y, ..., 0,}, {71, ..., 70},
{6y, ..., 8:} be sets of automorphisms of F (with possible repetitions) and let
{0;} and {6k} satisfy the additional condition that if a # 0, for any & with
1 < k <t then 8 = gy05.

Consider the additive group direct sum

R=FeUasVeW,
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select bases {u;}, {vy} and {wi} for U, V and W, respectively, and define a
multiplication on R by

(@0, Dt D Buviy D_wwi) (g, Yoty 3 Byvu, O Vews)
i H k i I k

= (@00, Doleoa; + ai(ag)Jui, Y (@b, + Bules) Jun,

i b
3
Z[ao‘r; + i o, )% + > afen(a;) " ws
k =1
Then this multiplication turns R into a ring as we see in the following theo-

rem.

Theorem 4.1 The ring R given by Construction A is a ring with property(T)
and of characteristic p. Conversely, every such ring is isomorphic to one given

by Construction A.

Proof We first show that R is in fact a ring. We know that it is an additive
abelian group and has multiplicative identity (1, 0, 0, 0), so it remains to
check that the multiplication is associative and distributive over addition. The
distributive properties can be seen immediately from the definition; however,
the check for associativity is more elaborate but as it is elementary, it is not

given here. Furthermore,

|R| LFI- UL V- W

= p" . p” 'PN\ .prt
= p(1+l+)\+t)r
= p",ifweputn=1+s+ A+t

and charR = p.
We now show that R is completely primary and satisfies property(T).

With the obvious identifications, we can think of F, U, V, W as subsets of
R.Put M =UsVaeW. It followsimmediately from the way multiplication was



CLASS OF FINITE RINGS 5059

defined that M2 C W and that M(VOW) = (VOW)M = 0. Hence, M3 = (0).
Also, from the definition of multiplication, it follows that RM = MR C M, so
that M is an ideal.

Let now a € F* and z € M. Since z™ = 0 for some m > 0, we Fave

Q+z)l-z+z2 -2+ 4+ (-1 'z ) =1

Thus, 1 + z is invertible for every € M. Then a + z = a(l + 0~ 'z) is the

product of two invertible elements, and hence is invertible.

Since |M| = p(+2+1) and |F* 4+ M| = (p" — 1)(p"*+**9), it fodows that
F* 4+ M = R~ M and hence, all the elements outside M are invert ble. Hence,
R/M = GF(p") and therefore, R is completely primary and saisfies prop-
erty(T).

To prove the converse, it is sufficient to notice that the considerztions before
Construction A establish that all rings of characteristic p satisfying property(T)

are like the ones given in Construction A.

We complete this section with a theorem concerning the case where the
Galois subfield F lies in the center of the ring R with property(T) and

characteristic p.

Theorem 4.2 Let R be a ring of Construction A. Then the field F lies in the
centre of R ifand only if o, = 7, = 0 = idp, foralli=1,..., s, p =1, A
k=1,..,t.

Proof f o = 7, = 6 = ddp, forall i = 1,.,s; g = 1,., A &k =1, ...
that F lies in the centre of R follows trivially from the multiplication defined in

Construction A.

Hence, suppose F lies in the centre of R. Let b € F be primitive. Then

(0, uyi, vy, we)-(b, 0,0, 0)=(b, 0,0, 0) - (0, ui, vy, wk),
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that is
(0, b%u;, 67wy, %% wy) = (0, bu;, bu,, bwy).
Therefore, b°* = &, b = b, % = b, and since b is a primitive element of F, it

follows that oy = 7, = 6k = idp; foralli=1, ., s;pu=1, .., M k=1, . t

Corollary 4.3 Let R be a ring of Construction A. Then R 1s commutative if
and only if o; = 6k = 74 = idg; and afj = a;‘-i, foralli, j = 1, .., s;
p=1, .., A k=1, .., t

This completes the characterization of all rings with property(T) and of

characteristic p.

We remark that if R is a ring with property(T), we shall call the integers p,

n, T, s, t and A, invariants of R.

It is clear that what we have named invariants are indeed that, that is,
isomorphic rings have the same invariants. On the other hand, it is easy to find

examples of non-isomorphic rings with property(T) and characteristic p with

the same invariants.

5 Enumeration of rings with property(T) and

characteristic p

In this section, we consider the problem of finding the number of distinct (up
to isomorphism) types of rings with property(T) and of characteristic p.

Let R be a ring with property(T) and characteristic p in which the maximal
Galois subfield F lies in the center. Then R is a ring of Construction A with
o =1, =0 =idg,, foralli=1,...,s; p=1,..,A k= 1,..,t (Theorem 4.2),

so that R has a multiplication

(o, D avui, D Buve, D wewn) (oo, D ogui, Y Buvu, Y vewk)
¥ B { o k

k

= (aoa,, Z[aoa; + o)y, Z[aoﬂ; +Bu0,v,,

i H
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3
Z[ao’n + Tea, + E a?jaiaj]wk)
k iJj=1

and the only parameters left in defining R are the ¢t compatible matrices (af-‘j)

of size s x s with entries in F.

Notice that since M? C ann(M), we can write
R=F@oU®N, where N=V W,

and if we denote vy, ..., vx by w41, ..., Wesa, respectively, then the above

multiplication for R becomes

t+ A t+A

! ’ i
(o, 3w, 9 Wewk) - (o, 9 oiuiy 9 VW)
i k=1 i k=1
i

]
= (Qoag, Z(aoa,‘ -+ Qiao]ui, Z[Qo'Yk + Y&, + Z a,’-‘ja.'a;]wk),
k

i 1,7=1

where af; = 0, forall k =t+1, .., t + A

It is therefore easy to see that the description of the rings of this type reduces
to the case where ann(M) coincides with M?. Therefore, to enumerate the rings
of this type of a given order, say p"", where ann(M) does not cuincide with
M2, we shall first write all the rings of this type of order < p"", where ann(M)

coincides with M2,
In what follows, we assume that ann(M) = M2,

Remark Let R be the ring given by the above multiplication with respect to
the compatible matrices Ax = (af;) € M (F) (k =1, .., t).

Let A= {Ax : k=1, .., t}, and denote the ring R by R(A) or R({A«}).
Up to isomorphism, the ring R(A) is given by t compatible matrices A, = (aﬁ-‘j)
of size s x s, and as before we call the compatible matrices Ay, the structural
matrices of the ring R(A). We also recall that if [R(A)| = p"", the integers p,

n, T, s, t are invariants of R(A).

Let now R be another ring of the same type with the same invariants p,

n, r, s, t; with respect to compatible matrices Dy = (d:‘j) over the common
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maximal Galois subfield F'. Denote this ring by R(D), where
D={Dy : k=1, .., t}. Our problem is to determine which choices of A give

distinct rings up to isomorphism. This is facilitated by the lemma below.

We take this opportunity to introduce the symbol M to denote o((ai;)) if
M = (aij).

Lemma 5.1 With the above notation,
R(A) = R(D)
if and only if there exist ¢ € Aut{F), B = {Bx,) € GL(t, F) and C € GL(s, F)

such that ,
D, = Bk, CTALC.

k=1

Proof Suppose there is an isomorphism
¢ R(A) — R(D).

Then, #(F) is a maximal subfield of R(D) so that there exists an invertible
element w € R(D) such that wé(Flw™! = F.

Now, consider the map

¢: R(A) —  R(D)
r o= wé(riuw!

Then, clearly, ¥ is an isomorphism from R(A) to R(D) which sends F to itself.
Also,

$(0, 3 aiwi, 0)= (0, 35 wladaviw,, ¥) (v € N);

and
w(0, 0, D vewk) = (0, 0, DD b(w)Bokw,).
k P k
Therefore,

$(0, D aiui, 0)- (0, > ou;, 0)
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= (0, Zzw(a;)anu:ﬂ y’) : (0, ZZw(aé)ausuL, y”)
A
(0 0, Z Z E Y{a;) 1/’(0 avxa#J uu w,

p vus=lig=l /

On the other hand,

" <(o, 3w, 0)-(0, Y oqui, 0)) =9(0,0, Y Z ajajalwy)
i i k i

J=1

= (0, o,ZZZw, ) Bk b(al)w,).
p

t
k=11ij=1

It follows that

Z Z 'b a: amaug Z Z w Qy a Bpkd x]) (2)

vu=lij=1 k=1ij=1

Now, ¥|r is an automorphism of F; and therefore,
¥(afy) = o(aly),
for some o € Aut(F). Hence, (2) implies that
t
ETD,E =Y BrpAf, with E = (au;);
k=1
that is,
t t
Dy = CT(Y_ BroALIC = Y B, CTAZC, where C = E7
k=1 k=1

as required.
Now, suppose there exist ¢ € Aut(F), B = (Bk,) € GL(t, F) and C €
GL(s, F) with
¢
ZﬁkpCTAd
k=1
Consider the map

Y R(A) — R(D)
(o, Ticiui, g yewe) —* (af, )DIDI afau;u:,, Lo 2ok ‘Yfﬁkpw;a)
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Then, it is easy to verify that ¥ is an isomorphism of the ring R(A) onto the
ring R(D).

As a result of this lemma, the set

{R({D_ BxeCTALCY) : B = (Bey) € GL(t, F), C € GL(s, F), o € Aut(F))

k=1

gives all the rings of Construction A which are isomorphic to R({A«}).

Corollary 5.2 Let A and D be sets of compatible matrices with entries from

F. If A and D generate the same space over F, then R(A) = R(D).

Proof This is a direct consequence of Lemma 5.1, with C = I, and ¢ = idp.

Next, we interpret Lemma 5.1 interms of bilinear forms.

Lemma 5.3 Let U be an s-dimensional F-space with bases (uy, ..., u,) and
(vy, ..., vs) and B a t-dimensional F-space of bilinear forms on U with bases
(fi, - fi) and (g1, ..., g1). Foreachk =1, ..., t, let Ay = (a¥;) and Dy = (d¥))
be matrices of fx and gi with respect to (uy, ..., u,) and (vr, ..., v,), respectively.
Then .
D, =3 B, CTAC,
k=1

where B = (fx,) and C = (a;) are the transition matrices from (fy, ..., fi) and
{u1, .., us) to (g1, ..., g¢) and (v1, ..., vy), respectively.

Proof We have s
v = Zay;uu, fori=1, .., s;

v=l

and .
9o = Zﬁkpfk, forp=1, .., t.
k=1

Now, by the bilinearity of fi,

go(vi v5) = D Bepfilvi, v5)
k=1

t £}
Eﬂkp z aviaﬂjfk(UUy uu);
k=1

vu=1
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that is, -

t s
o . Ak
dij = E :ﬁkp Z @iQuja, ,,
k=1

v, u=1
from which the result follows.

Definition If (A4;, ..., A,) and (D, .., D.) are matrices corresponding to
bases (fi, ..., fi) and (g1, ..., g¢) of F-spaces A and D of bilinear forms on
s-dimensional F-spaces U and V, respectively, then we shall say T is equivalent
to A if there exist invertible matrices B = (fk,) and C such that for each
p=1, ..t

t
D, = Zﬂk,cTAkc,
k=1
It is readily seen that the relation of being equivalent, defined above, is an

equivalence relation on spaces of bilinear forms.

Notice that the formula in Lemma 5.1 matches that in Lemma 5.3 if we
take ¢ to be the identity automorphism on F. In particular, if th2 rings under
consideration are constructed from prime subfields F, or if the rings are com-
mutative, then the formulae in the two Lemmata will be the same. Therefore,
there is a connection between isomorphism classes of commutative rings with
property(T) and characteristic p with the same invariants p, n, r, s, t; and rings
with property(T) and characteristic p with prime subfields F, with the same
invariants p, n, s, t; and equivalence classes of t-dimensional F-spaces of bilinear

forms on s-dimensional F-spaces U.
In view of the above, we have the following:

Theorem 5.4 Two rings with property(T) and characteristic p and of same
order, with marimal Galois subfield F, and with same invariants p, n, s, t,
are isomorphic if and only if the corresponding spaces of bilinear forms are
equivalent. Also, two commutative rings with property(T) and characteristic p
and of the same order with same invariants p, n, r, s, t are isomorphic if and

only if the corresponding spaces of bilinear forms are equivalent.
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6 Rings with property(T) and characteristic p*,
v=2,3
In this section, we describe the remaining cases of rings with property(T),

namely, those of characteristic p? and p®, and give their general construction in

Consturction B.

6.1 Rings of characteristic p?

Let R be a ring with property(T) and characteristic p>. Then R contains an
element b of order p" — 1 such that b + M is a primitive element of R/ M, M
being the unique maximal ideal of R. Let R, = Zp2{b]. Then R, is a Galois
subring of R of order p?" and characteristic p? (see 1.4 and 1.8). The maximal
ideal of R, is

M, =pR,=MnNR,,

and

Ro/ M, = GF(p").

Let ¢ be the canonical map from R, onto R,/ M,. Since b has order p" — 1
and M, C M, we have that ¥(b) is a primitive element of R,/M,. Then, by
1.8, every element of R, can be written uniquely as A, + A, p, where A\,, A\ € K.

Now, by 1.6, we know that
R=R,&® Rom; &...® R,m;, where m; € M

and we know that there exist ¢y, ..., o € Aut(R,) such that m;r = r%+m,, for
all r € R,, and for all m; € M. Clearly,

M=pR,® Rom1@®...® Romy.
Since M? = (0) and M? C ann(M), with M2 # (0), we can write
{ml, ey mh}z {21) vy ey Y1y ooy Yay 21y ey zt}

where, z,, ...z, € M—ann(M), y1,...,yr € ann(M)=M?and zy,....,z, € M2

Accordingly, we write

{Ull ey ah} = {0’1, vy Oy T1, ooy T, 91) ey ek}:



CLASS OF FINITE RINGS 5067
where s+ A+t = h.

In view of the above considerations and by 1.8, since pm = 0, for all m ¢
ann(M), we have either
(iy p e M?;
(ii) p € ann(M) — M?; or
(iif) p € M — ann{M).

We consider these cases separately.
Case (i). p € M2

In this case, 1 < 1+t < s%; A > 0, by Proposition 3.2. Hence, every element

of R may be written uniquely as

Ll A t
Mo+ AP+ Y aizi+ D Bulu+ 9 W2k Aoy A1y @iy Bu, w € Ko

i=1 u=1 k=1

Clearly, z;z; € M?2. Therefore,

t
iz = afjp+ Za{-‘jzk, where afj, af‘j € R,/pR, (3)
k=1
Now, since p, zx € M? (k =1, ..., t), we can write them as surns of products
p

of elements of M. In particular, p, zx can be written as linear combinations of
r;z; with coefficients in R,/pR,. Hence, since p, z, (k =1, ..., t} form a basis
for M? over R,/pR,, we conclude that z;z; (i, j =1, ..., s) generate M? over

Ro/pR,. Therefore, the coefficients in (3) form a matrix

1
af; ay ... af
1
iz 432 aja
A= )
1
a‘:! all A at’l
of row rank 1+ t. In particular, the matrices (af.‘j) (k=0,1, ..., t), which are

the 1 +1t columns of the above coefficient matrix, are linearly independent over
R./pR,. Moreover, since for every [ € {1, ..., s}, z; € ann(M), it follows that
there exists 2 j € {1, ..., s} such that z;z; # 0 or z;z; # 0. Or equivalently,
for every | € {1, ..., s}, there exists a k € {0, 1, ..., t} and a j € {1, ..., s}
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such that a:‘j #0or af, # 0. As in Section 4, the s x s matrices (afj), . (afj)

with entries in R,/pR, are compatible.

Next consider the automorphisms oy, fx; (i =1, ..., s; k=1, ..., t). By

using the associativity of R which requires that
(zizj)b = zi(z;b), 1<4j<s

we have

t
pad(b+pRo) + D af;(b+ pRo)™ 2k = (b+ pRo)" " [paf; + Y _ akjzi].
k=1 k=1

Hence,

pa;[(b+ pRo) — (b +pRo)* ) = 0;

and
t

> af{(b+pRo)%™ = (b + pRo) )2k = 0.
k=1

But p, zx, (k = 1, ..., t}, are linearly independent over R,/pR,; so that

af;{(b+pRo) = (b + pRo)" 7] = 0;

and
abl(b+pRo)® — (b+pR)™* ] =0, forallk=1, ., ¢
Hence,
af; =0or (b+pRo) = (b+ pRo)*7";
and

af; = 0or (b+pRo)*™ = (b+pR,)"7".
Suppose that af; # 0. Then (b+pR,) = (b+pR,)?*?7. But b+pR, is a primitive
element of R,/pR,, so that o;0; = idg,. Also, if a{-‘j # 0, then §¢ = 5;0;. Since
the columns of matrix A are linearly independent, they are, in particular, non-
zero and so there exist an afj # 0 and for every k = 1, ..., t there exist an

afj # 0, and hence o;6; = idg, and 8 = 0y0;. So the oy determine the 6.

Therefore the multiplication in R is now given by

H A t s A t
DL E DAL D B EARCE DBLILED L ATED P
i=1 pu=1 k=i i=1 u=l k=1
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s 3
= aoa, +p 3 afjaile))” + 3 l(ae + PRy + ailay, + pRo)Jzit
i,j=1 i=1
A

> (a0 +PRo)B, + Bulay + PRo) ™ Iyu + 3 (00 + PRo)W + W (e, + PR,)™

Bn=1 k=1
3
+ Z afjm(aj)"']zk.
1,j=1
Thus, up to isomorphism, the ring R is given by 1 + ¢ compatible matrices
Ag = (a{-‘j) of size s x s, and by automorphisms oy, 7, (1 =1, ..., s; u =1, .., A)

with ¢;0; = idg, whenever afj #0.

As before, we shall call the compatible matrices A, the structural matrices of
the ring R and if Ak is a singleton with element a, we shall call a the structural

constant of R.
Case (ii). p € ann(M) — M2

The argument is the same as in the previous case. However, in this case,
k.
i]
automorphisms oy, 6x, 7, with fx = 0y0; whenever af; £0 (i =1, .., s; p =
I, ., A k=1, ).

the ring R is given by t compatible matrices Ax = (af;) of size s x s, and by

Hence, the multiplication in R is given by
s A t s A t
(o Do eimi+ D Bt + D maw) (ao+ D izt 3 Bun +) mer)
i=1 u=1 k=1 i=1 p=1 k=1

s A
= aoa; + Z[(ao +pRo)a:' + a,-(a; +pR,)% )z + Z[(ao + pR‘,)ﬁ;J
i=1 u=1
4 s
+B8u(a, +pRo)™ |y + Z[(ao +PRo)vi + 1k (o + PRo)* + Z af,'ai(aj)a']zk

k=1 ij=1

Case (iii). p € M — ann(M).

Suppose that d > 0 is the number of the elements pz; which are not zero,

where z;,...2, € M — ann{M). Suppose, without loss of generality, that
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pzy, ..., pxq are the d non-zero elements. Then, by Proposition 3.2, we have

1<d+t< (1+5)% A > 0. Hence, every element of R may be written uniquely
as

3 d A [3
Aot Mp+ Y aizi+ Y Epzi+ Y Bubut D Thzki Aoy Al @i &, By, k€ K.
=1 u=1

=1 = k=1

Clearly, the products z;z; € M?. Hence,

d ¢
Tix; = Zafjpz( + Zafj+dzk, where aﬂj, affd € Ro/pR,. {(4)
i=1 k=1
Now, since pzi, zx € M? (I =1, ..., d; k=1, ..., t), we can write them as

sums of products of elements of M. In particular, pz;, zx can be written as
linear combinations of pz; and z;z; with coefficients in R,/pR,. Hence, since
pri,zx (=1, ..., d; k=1, .., t) is a basis for M? over R,/pR,, we conclude
that pz; and z;z; (i, j = 1, ..., s) generate M?2. Therefore, the coefficients in

(4) form a matrix

al; ... a} aﬁ.l a‘ff"

1 d d+1 d+t

Gy -+ Gy Q3 .. @)

A=

o, ... af, afft ... aif
of row rank d+t. In particular, the matrices (a};) and (afj*'d) (l=1,.,d k=
1, ..., t), which are the d + ¢ columns of the above coefficient matrix, are
linearly independent over R,/pR,. Moreover, since for every h € {1, ..., s},
zh & ann(M), it follows that there exists a j € {1, ..., s} such that z4z; # 0
or zjzp # 0. Or equivalently, for every h € {1, ..., s}, there exists a s €
{1, .., t+d}and 2a j € {1, .., s} such that af; # 0 oraf, # 0. As in the
previous cases, the s x s matrices (a,-lj), s (af;'d) with entries in R,/pR, are

compatible.

We next consider the automorphisms a5, x; (i= 1, ..., s; k=1, ., t). By

using the associativity of R which requires that
(zizj)b = zi(z;8), 1<4,j<s;

it is easy to show that for every { = 1, ..., d there exist an a’ij # 0 and for every
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k=1, ..., t there exist an afj*d # 0, and hence oy = 0i0; and 6 = oy0;. In

particular the o; determine the 6.

Therefore, the multiplication in R is now given in a suitable manner as
in the previous cases with obvious notation. Thus, the compatitle matrices
(@), o (af}d), and the automorphisms o, 7, determine completely the mul-

tiplicative structure of R.

6.2 Rings of characteristic p°

In this case, let R, = Zps(b]. Then, the argument is similar to that given in the
case where charR = p?. However, in this case, p € M ~ ann(M) aad p? € M?
and thus, if af; # 0, then o,0; = idg,; if aﬂ-j # 0, with! =1, ..., d, then

o, = 0;0; and if afj“ #0,with k=1, .., t then 6 = 005,

We can now give the following:

CONSTRUCTION B

Let R, be the Galois ring GR{p*", p?) or GR(p®>, p?). Let s, d, t, A be
integers with either 1 <t <s?, 1< 1+t<s*orl<d+1t<s?ifcharR, = p?
or1 <14d+t<(1+s?%) ifcharR, = p3 and A > 0. Let V, W be R,/pR,-
spaces which when considered as R,-modules have generating sets {vy, ..., va}
and {w;, ..., w}, respectively. Let U be an R,-module with an R,-module
generating set {uy, ..., u,}; and suppose that d > 0 of the u; are such that
pu; # 0. Since R, is commutative, we can think of them as both left and right
R,-modules.

Let (aﬁj), for{=0,1, ..., t, 1+t ord+1t, be s x s compatible matrices
with entries in R,/pR, if charR, =p?orl =0, 1, ..., d+tbe (1+5) x (1 +3s)
compatible matrices with entries in R,/pR, if charR, = 2. Let {oy, ..., 0,},
{r, ..., =}, {61, ..., 6.} be sets of automorphisms of R, {with possible repeti-
tions) and let {¢;}, {6« } satisfy the additional conditions that
(i) if af; # 0, then oi0; = idp,;

(ii) if af, # 0, for any h with A= 1, ..., d, then oic; = o4; and

(ii) if aff* # 0, for any k with k =1, ..., ¢, then 6k = 0y0;.
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Consider the additive group direct sum
R = Ro @ U D 14 @ w

and define a multiplication on R by

(@00 ity 3 Buvyy 3 Wwwk) - (0o, D oiui, O Buvu, 3 metwk)
i [ k i b k

s
= | @, + 07 37 ajlaileg)” +pRa],
ij=1
3

> leon; + ai(e,)” +p Y ab,lan(e,)” + pRoJus,

i=1 vzl

> l(ae + PRoYB, + Bulary + pPRo)™ vy,
n

> U + PR + Wlag + pR)™ + 3 af*[as(ay)” + pRoJJuk | ,
k §,7=1

where f =1 or 2, depending on whether charR, = p? or p°.

Then this multiplication turns R into a ring as we see in the following theo-

rem.

Theorem 6.1 The ring R given by Construction B 1s a ring with property(T)
and of characteristic p? or p3. Conversely, any ring with property(T) and of

characteristic p? or p3, is isomorphic to one given by Construction B.

Proof We give the proof for the case of rings of characteristic p®. The other
case will then follow by simple modifications.

First we show that R is in fact a ring. We know that it is an additive abelian
group and has multiplicative identity (1, 0, 0, 0) where 1 € R,; so it remains to
check that the multiplication is associative and distributive over addition. The
distributive properties can be seen immediately from the definition;- however,
the check for associativity is more elaborate but as it is almost elementary, it is

not given here. Furthermore,

IRl = [|Ro|- U] V] |W|
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- par ,pf Z:_:‘ b .pAr ‘p"

= p(3+§::=x titAtt)r

s
", ifweputn=3+Zt;+/\+t;

i=1

(where p*' is the additive order of u;), and charR = p.

We show that R is completely primary and satisfies property(T). With the
obvious identifications, we can think of R,, U, V, and W as subsets of R. Put
M=pR, UV &W. It follows immediately from the way multiplication
was defined that M? C p?R, + pU + W and that

M@P*R, +pU +V + W)= (p’Ro+pU +V + W)M = (0).

Hence, M3 = (0). Also, from the definition of multiplication it follows that
RM = MR C M, so that M is an ideal.

Next, let r, € R, with r, & pR, and let z € M. As in the proof of Theorem

4.1, it is easy to check that r, + z is invertible.
Since | M| = p?* it T 4y
(Ro/PRo)" + M| = (p" - 1)(p(2+2.=1 LA+

it follows that K, + M = R — M and hence, all the elements outside M are
invertible. Therefore, R is completely primary and satisfies property(T).

Now, let R be a ring with property(T) and characteristic p®. To show that
R is a ring of Construction B, it is sufficient to notice that the considerations
before Construction B establish that all the rings of characteristic p® satisfying

property{T) are like the ones given in Construction B.

Remark As in the previous case, if R is a ring with property(T) and charac-
teristic p? or p®, we shall call the integers p, n, r, d, s, t and A, invariants of
R. We remark that p can be any prime; n, r, s can be any positive integers
and d, A can be any integers > 0, while t is subject to the condition that either

1<t<s?,1<1+t<s?orl<d+t<s?ifcharR = p? and that p can be
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any prime; n, r can be any arbitrary positive integers and s, d, A can be any
integers > 0, while ¢ is subject only to the condition that 1 < 1+d+t < (1 +35)?
if charR = p3.

We complete this section with a theorem concerning the case where the
Galois subring R, lies in the center of a ring R with property(T) and

characteristic p? or p3.

Theorem 6.2 Let R be a ring of Construction B. Then the Galois ring R,
lies in the centre of R if and only if 0y = 1, = 6, = idp,, for all i, u and k.

Proof This can be proved in a similar manner to Theorem 4.2.

Corollary 6.3 Let R be a ring of Construction B. Then R is commutative if

and only 1f 0y = 7, = 0 = idp,, and a?j = a;-‘i, foralli, u, k and h.

7 Enumeration of Rings with property(T) and
of characteristic p¥, v = 2,3

In this section, we consider the problem of finding isomo'rphism classes of rings
with property(T) and characteristics p? and p3. In particular, we consider the
case where the maximal Galois subring R, lies in the centre of R, so that R is
a ring of Construction B, with oy = 7, = idRr,, and hence, 8; = idg, for all

i, g4, k (Theorem 6.2).

7.1 Rings of characteristic p?

In Section 6, we saw that there are three types of rings with property(T) and
characteristic p?, namely, those in which

(i) pe M%

(i) p € ann{M) — M?; and

(ill) p € M — ann(M).

It is clear from the considerations in Section 6 that these rings have great

similarities and to avoid repetition, we opted to treat them under one construc-
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tion. However, to avoid considerable loss of clarity, we have opted to treat them

separately in this section.
We start with the following:

Case (i). The case where p is in M?

We know that all the rings of this type are rings of Construction B, and so if
R is such a ring, the only parameters left in defining R are the s x s compatible
matrices A; = (af-j) over R,/pR,, forl =0, 1, .., t.

Since M? C ann(M), we can write
R=R,eU®N, where N=VaoW,

and if we denote vy, ..., vy by wig1, ..., Wetn, respectively, then the above

multiplication for R in Construction B becomes

42 £+ \

1 i i
Qo § iUy, § VeWk ] - | Gy, § Q Uy, E 'kak)
i i k=1 /

k=1

s s
= [aea, +p Z af;[(@ia;) + pR,], Z[(ao +pRo)oy + aila, + pRo)uy
1,5=1 =1

3

S (a0 + pRo)ve + 1 (ap + PRo) + Y afil(aio;) + pRolwk | |
k 1,7=1

where af; =0, forallk =t +1, .., t+A.

It is therefore easy to see that the description of rings of this type reduces to
the case where ann(M) coincides with M?. Therefore, as before, to enumerate
rings of this type of a given order, say p"", where ann(M) does not coincide
with M2, we shall first write all the rings of this type of order < p"", where
ann(M) coincides with M2,

As before, we assume that A = 0, in what follows.

Let A be the set consisting of the compatible matrices A,, ..., A, and denote

the ring with the above multiplication by R(A) or R({Ax}). Let R(D) be
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another ring of the same type with the same invariants p, n, r, s, t, where D
is the set consisting of the structural matrices for the ring R(D). We assume
that R(A) and R(D) are constructed from a common maximal Galois subring
R,. Our problem is to determine which choices of A give distinct rings up to
isomorphism. This is facilitated by the following lemma.

Lemma 7.1 Let R(A) and R(D) be rings with property(T) and of characteristic
p? in which R, lies in the centre, with the same tnvariants p, n, r, s, t, and in
which p lies in M?. Then R(A) = R(D) if and only if there exist o € Aut(R,),
B ={B,) € GL{1+t, R,/pR,) and C € GL(s, Ro/pR,), such that

t
D, =Y B, CTAC.
k=0
Proof Similar to that for Lemma 5.1.

As a result of this lemma, the set of all rings

R ({Zﬁk,CTA;’C}>

k=0
where

B = (Bk,) € GL(1 +1, Ro/pRo), C € GL(s, Ro/pR,), 0 € Aut(R,)

gives all the rings of Construction B in which p lies in M? isomorphic to
R({Ax}).

Case (ii). The case where p lies in ann(M) — M?

Notice that, in Case (i), we assumed that p € M?. However, if now p €
ann{M) while p ¢ M?, the discussion is virtually the same as that given above
only that in this case the matrix B = (fk,) willbe in GL{t, R,/pR,). Therefore,

we have the following:

Lemma 7.2 Let R(A) and R{D) be rings with property(T) and of characteristic
p? in which R, lies in the centre, with the same invariants p, n, r, s, t, and in

which p lies in ann{M) — M?. Then R(A) = R(D) if and only if there exist
o € Aut(R,), B = (Bk,) € GL{t, R,/pR,) and C € GL(s, R,/pR,), such that

t
D, =Y B, CTAC.
k=1
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As a result of this lemma, the set of all rings

R ({i ﬂk,CTAZC})

k=1

where
B = (ﬂkﬂ) E GL(!, RO/pRO)t C E GL(S, Ro/pRo), [ G Aut(Ro)

gives all the rings of Construction B in which p lies in ann(AM) — M? isomorphic
to R({Ak})

Case(iii). The case where p lies in M — ann(M)
The discussion is the same as in the previous two cases only that in this case

B = (Bk,) € GL{d+1, Ro/pR,} and hence,we have the following lemma.

Lemma 7.3 Let R(A) and R(D) be rings with property(T) and characteristic
p? in which R, lies in the centre, with the same invariants p, n, r, 5, d, t and
in which p does not lie in ann(M). Then R{A) = R(D) if and only if there
erists a 0 € Aut(R,), B = (Bx,) € GL(d+t, Ro/pR,), C € GL(s, Ro/pR,),

such that
d+t

D, =Y B, CTALC.

k=1

Thus, as a result of this lemma, the set of all rings

t4d
R ({Zﬁk,CTA‘,:C})

k=1

where
B = (Bry) € GL(t + d, Ro/pR,), C € GL(s, Ro/pR,), 0 € Aut(R,)
gives all the rings of Construction B in which p does not lie in ann({M) isomor-

phic to R({A«}).

7.2 Rings of characteristic p?

In this case, R is a ring of Construction B with ; = 7, = idg,, and hence,

6 = idg, for all i, u, k (Theorem 6.2). The following lemma gives a formula to
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show when two rings of this type and with the same invariants are isomorphic.

Lemma 7.4 Let R{A) and R(D) be rings with property(T) and of characteristic
p® in which R, lies in the centre, with the same invariants p, n, 7,5 d t.
Then R(A) = R(D) if and only if there exists a ¢ € AutR,, B = (f,) €
GL(1+d+t, R,/pR,), C € GL(s, Ro/pR,), such that

d4t
D, = ZﬁkaTAiC, where M? means (o(ai5)), if M = (a;;).
k=0

Proof Suppose there is an isomorphism
¢ : R(A) — R(D).

Then, ¢(R,) is a maximal Galois subring of R(D) so that there exists an in-
vertible element w € R{D) such that wé{R,)w™' = R,.

Now, consider the map
v: R(A) —  R(D)
r — wé(r)w!
Then, clearly, ¥ is an isomorphism from R(A) to R(D) which sends R, to itself

and w(P) = QoopP, with Qoo = l; d)(p2) = ﬁoap2» with /300 =1
Also,

¥(0, w, 0) = (coip, D aviu,, y) (¥ €W);
v=1
and

d t
w(0, 0, we) = (Bokp®s D Bukp, O Bprakw, ).
=1

p=1

Now, since puj € M? forallj =1, ..., d;

d t
Ypw;) = Boip’ + Y Bujpu, + D Brrasw,

v=l n=1

= po(ys)

L)
= ploop+ Y aviu, +y')

v=1

d
= chpz -+ Z Qujipu,,;

v=l
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which implies that a,; = Boj; ovj = Buj forallv =1, .., d; and Fypia; = 0,

forallnp=1,

Therefore,

¥(0, ui, 0) - ¥(0,uj, 0) = (@aip, Zam‘u;;, y) - (aosp, Zamul,ﬂ y)
v 4

d s t s
l i h d t
E amaw V# E E a,,;a“jd,,“pu,, E E a,;aﬂjduj Wy .

v,u=0 {=1v,p=0 h=1v,u=1

On the other hand,

11’( (0, Uy, 0) . (0, Uy, 0 = 1Jp Zaljpu“ :1]+dwh)
h=1

= (W(af)p +§:ﬁolw at)p +Zﬁod+hw alt)p?

=1

4 d
ZZ‘P ij )Brip, +ZZV/ ) Br hrapr,

r=11=1 r=1h=1

t t

d
> wlal; VBrrwe + Y Barkarntlaly M yuwg ).

M..

k=1l=1 k=1h=1
Hence,
s a4t
ayiay;d Zw a;)Bkp; =0, 1, , d+t;
v,u=0
But this implies that
d+t
ETD,E=_ Bk AL
k=0
that is,
d+t
D, =CT[D)_ B, ALIC, C=EY
k=0
or
d+t
Dp = ﬂkpCTAfC.
k=0

Now, ¥|r,/pR, is an automorphism of Ro/pRo. But Aut{R,/pR,) = Aut(R,)
(see 1.3). Hence, ¥|r,/pR, is an automorphism o of R, and therefore AY = A7,
with ¢ € Aut{R,).
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Conversely, suppose there exist C € GL(s, R,/pR,), B = {(Bko) € GL(1 +
d+t, R,/pR,) and ¢ € Aut(R,) with

d+t
D, =) BuxCTALC.

k=0

Consider the map

v R(A) — R(D)
(oo, 2o @iui, Dok Yewk) +— (@ + Y afawip+ 3, 2 Bok P
T T alanu, + S0 Sk Y8 By,
Zp Zk 7Zﬁd+p,d+k w;)

Then, it is route to check that ¥ is an isomorphism of the ring R(A) onto the
ring R(D).

As a result of this lemma, the set of all rings
t+d
R ({Z ﬂk,,CTAZC}>
k=0

where
B =(0k,) €GL(1+d+1t, Ro/pR,), C € GL(s, R,/pR,), ¢ € Aut(R,)

gives all the rings of Construction B isomorphic to R({A«}).

We have thus formulated the isomorphism problem and it remains to obtain

unique representatives of the isomorphism classes.
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