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COMMUNICATIONS IN ALGEBRA, 27(l O), 5049-508 1 (1 999) 

ON A CLASS OF FINITE RINGS 

Chiteng'a John Chikunji 

D e p a r t m e n t  of M a t h e m a t i c s  and S t a t i s t i c s ,  

U n i v e r s i t y  of Z a m b i a ,  Lusaka .  

Abstract  

In [7], Corbas determined all finite rings in which the product of any 

two zerodivisors is zero, and showed that they are of two types, one of 

characteristic p and the other of characteristic p 2 .  

The purpose of this paper is to address the problem of the classification 

of finite rings such that 

(i) the set of all zero-divisors form an ideal M; 

(ii) M~ = (0); and 

(iii) M 2  # (0). 

Because of (i), these rings are called completely primary and urt: shall 

call a finite completely primary ring R which satisfies conditions ( I ) ,  (ii) 

and (iii), a ring wtth property(T). These rings are of three types, niimely, 

of characteristic p, p2 and p3. The characteristic p2 case is subtLvided 

into cases in which p E M', p E ann(M)  - M' and p E M - an~ri(M),  

where a n n ( M )  denotes the two-sided annihilator of M in R. 

0 Introduction 
Throughout, all rings are finite, associative (but generally not commuta- 

tive) and have an identity element, denoted by 1. Further, i t  is assumed that  

homomorphisms preserve 1, subrings have the same 1 and modulerr are unital 

Copyright Q 1999 by Marcel Dekker, Inc 
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We begin with a section of preliminaries, where we gather the required no- 

tions about finite completely primary rings. In Section 2 ,  we give a brief review 

of the types of finite completely primary rings tha t  have been classified in terms 

of well known structures; see Raghavendran [9] and Corbas [6] and [7]. 

In Section 3, we consider rings with a certain property(T) and obtain some 

elementary results concerning these rings. Section 4 describes rings with prop- 

erty(T) and of characteristic p, giving a construction of these rings and proving 

that  this construction indeed describes them all and in Section 5 we consider 

the problem of enumerating these rings. In particular, we give a method of de- 

termining the isomorphism classes of these rings in the case where the maximal 

Galois subfield lies in the centre. In Section 6, we consider the remaining cases, 

namely, those of characteristic P2 and p3, respectively. In the last Section, we 

extend the problem of section 5 to these cases; tha t  is, we give formulae for de- 

termining the isomorphism classes of these rings in the cases where the maximal 

Galois subrings lie in the center. 

1 Preliminaries 

For convenience of the reader, we shall gather in this section all definitions and 

results which will be used in the sequel. 

The following are the known results. 

1.1 Let R be a finite ring. Then, there is no distinction between left and rtght 

zero-divisors (units) and every element in R is either a zero-divisor or a unit. 

(see Section 4 in [6]). 

The following results can be found in [9] 

1.2 Let R be a finite completely primary ring, M the set of  all the zero-divtsors 

in R, p a prime, k ,  n and r be positive integers. Then 

(i) IRI = pnr; 

(11) M I S  the Jacobson radrcal of R; 

(lit) Mn = (0); 

(iv) /MI = p(n- l ) r ;  
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( v )  RIM Y C F ( p r ) ,  the finite field of p' elements; and 

(vi) charR = pk where 1 5 k 5 n. 

1.3 Let R be as in 1.2. If n = k ,  then R = Zpk[b],  where b is an element of R 

of multiplicative order pr - 1; M = pR and A u t ( R )  Y A u t ( R / p R ) .  :Such a ring 

is called a Galois ring and denoted by C R ( p k r , p k ) .  

1.4 Let R be as in 1.2 and let charR = pk. Then R has a coeflcient subring R ,  

of the form which is clearly a maximal Galois subring of R .  Th i s  

can easily be deduced from the main theorem in [3]. 

1.5 Let R be as in 1.2. I ~ R ;  is another coeficient subring of R then there ezists 

an invertible element I in R such that R: = zR,+-' (see theorem I< in [9]). 

The  following result is due to Wir t  (131. 

1.6 Let R be as in 1.2. Then there ex& m l ,  ..., mh E M and r r l ,  . . . ,  ah  E 

Aut(R, )  such that 

R = R ,  $ R,ml $ . . . $ R,mh (a s  R ,  - modules ), 

mir ,  = r:~rn,,  for all r ,  E R ,  and any i = 1,  ..., h .  Moreover, o,, . . . ,  uh are 

uniquely determined by R and R,. 

By using the decomposition o f  Ro Ro in terms o f  Aut (R , )  ,ind the fact 

that R is a module over Ro @z R o ,  one may obtain the proof o f  1.t;. 

W e  call ai the automorphism associated with mi and u1, ..., o h  tt .e associated 

automorphisms o f  R with respect t o  R,. 

1.7 Let R be as in 1.2 and let charR = p k .  If m E M and p' 1 s  the additive 

order of m ,  for some positive integer t ,  then ( R a m (  = ptr. Th i s  follows from the 

fact that R a m  Y R, /p tRo.  

1.8 Let R be a completely primary ring and let R ,  be a maximal Galois subring 

o f  R .  Then ,  by 1.3, R, = Zpk[b]. Let I(,  =< b > ~ ( 0 ) .  T h e n ,  it is easy t o  

show that every element of R ,  can be written uniquely as c::;: piX,, where 

Xi  E KO. Since R = R ,  $ R,ml $ . . . $ R a m h  (by  1.6), it is easy t o  see that  

M = pR,$R,ml  $ . .  . $ R a m h .  
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2 Review of well-known structures 

We briefly review the types of finite completely primary rings that have been 

classified in terms of well known structures; see Raghavendran [9] and Corbas 

[6 ]  and [7]. 

Raghavendran attacked the problem by taking a finite completely primary 

ring of order p n r ,  and characteristic pk and considering the two extreme cases 

k = 1 and k = n. For rings of characteristic p ,  he was only able to give complete 

classification in two special cases: 

(a)  when M 2  = (0); and 

(b) when Mn-'  # (0) so that M has index of nilpotence n. In both cases, 

the rings can be represented as rings of matrices over GF(pr) .  Corbas [7] has 

also given a classification of rings of type (a) ,  but, in fact, his work goes much 

further and classifies all finite rings with M 2  = (0). These are of two types, 

one of characteristic p ,  and the other of characteristic P'. 

Completely primary rings with full characteristic pn have been of interest 

for some years. Clark mentions in (31 that Krull worked with these rings as 

early as 1924, and that Janusz rediscovered them in [a]. Raghavendran has 

classified these rings as quotients of polynomial rings. It is worth noting that 

Raghavendran's classification of these rings had already been discovered by both 

Krull and Janusz, although their considerations have been less detailed. Indeed, 

the terminology "Galois Rings" which Raghavendran uses for a ring of this type, 

was introduced by Janusz. 

In [9], one more type of completely primary rings is considered and a clas- 

sification produced, namely, those completely primary rings of order p"', and 

maximal ideal M of index of nilpotence n - 1. Raghavendran called them 

near-Galois rings. 

The only other completely primary rings for which a classification has been 

produced are those finite rings with n zero-divisors and order exactly n 2 .  Corbas 

shows in [6] that there are exactly two types of these rings, one being of order 

p 2 r ,  and characteristic p (so that M 2  = (O)), and the other of ordei p2' and 

characteristic p 2 ,  i.e. a Galois ring. So both of these types are included in the 

classifications produced by Raghavendran. 
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In summary, the types of completely primary rings that have beel classified 

are: 

(i) rings of order pnr and characteristic pk with M2 = (O), for any k ;  

(ii) rings of order pnr and characteristic p with Mn-' # (0); 

(iii) rings of order pnr and characteristic pn,  i.e. Galois rings; and 

( I V )  rings of order pnr and characteristic pn-' with M n - I  # (0); i.e. near-Galois 

rings; for any prime p and positive integers n and r .  

3 Rings with property(T) 

In this section, we obtain some elementary results concerning rings with p rop  

erty(T). Let R be a ring with property(T). Since R is such that M3 = (O), 

then by 1.2 charR is either p, p2 or p3. Hence, by 1.4, R contains .i coefficient 

subring R, with charR, = charR, and with R,/pR, equal to R I M .  Moreover, 

R, is a Galois ring of the form G R ( P ~ ' , P ~ ) ,  k = 1 , 2  or 3. 

Let a n n ( M )  denote the two-sided annihilator of M in R ,  which is of course 

an ideal of R. Because M3 = (0),  it follows easily that M2  C_ a n n ( M ) .  

We know from 1.6 that R = Ro$Roml$. . .$R,mh, where mi E ,U, and that 

there exist automorphisms 01, ..., a h  E Aut(R,) such that mir, = rg lmi ,  for all 

r, E R, and for all i = 1, ..., h; and that the number h and the automorphisms 

a ,  are uniquely determined by R and R,. Again, since M 3  = ( O ) ,  we have 

that p2mi = 0, for all mi E M .  Further, pmi = 0 for all mi E a n n ( M ) .  In 

particular, pmi = 0 for all mi E M 2 .  

Let d 2 0 denote the number of the mi E {ml ,  m2, ..., mh) w,th pmi # 0.  

Since R = R, $ Roml @ . . . $ Romh and every element of R, can be written 

uniquely as piXi, where Xi E KO, and if 1RI = pn', then, since IIi',) = p', 

i t  follows that 
h + 1 when charR = p 

n =  { h +  d + 2  when c h a r R = p 2  

h + d + 3  when ~ h a r R = ~ ~ .  

Lemma 3.1 Let R be a rmg with property(T) and let It' = R I M .  Then 

M / a n n ( M )  is a vector space over I(. 
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P r o o f  It  is easy to  verify that  M / a n n ( M )  is a vector space over Ii' on defining 

scalar multiplication on M / a n n ( M )  by 

P r o p o s i t i o n  3.2 Let R be a rang with property(T) and  let K = R I M .  I f  

d i m ~ ( M / a n n ( M ) )  = s, then dimK ( M ' )  5 s2 

P r o o f  We prove this for the case where a; = idRo, for all i = 1, . . . ,  h .  The 

general case follows from this. 

Let Z1, ..., 5, be a fixed A'-basis for M / a n n ( M ) .  Let c E M ~ .  Then 

for some integer t 2 1. But 

Hence, 

= C (C ~ ; k , U ~ k ) " ~ j ;  where C A ; ~ ~ , ~  E ii 
i , j = l  k = l  k = l  

Therefore, the products x i x j  ( i ,  j = 1 ,  ..., s) generate M 2  over I<. Hence, 

d imK(M2)  is atmost s2 

C o r o l l a r y  3.3 If d i m ~ ( M / a n n ( M ) )  = 1 ,  then d i m ~ ( M ~ )  = 1 

4 Rings of characteristic p 

Let R be a ring with property(T) and characteristic p. In this case, K O  is a field 

F of order pr and by choice of 6 ,  every element of R may be written uniquely 
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as a ,  + rn with a ,  E F ,  m E M (see 1.8), and therefore any element of R may 

be written uniquely as 

Note that  since M3 = (0) and M2  C_ ann(M) with M2  # (0 ) ,  we <::in write 

where X I ,  ..., XJ  E M - ann(M), yl, ..., y~ E ann(M) - M 2 ,  and t l ,  . . . ,  Z, E 

M'. Accordingly, we write 

where s + t + X = h ,  and by Proposition 3 .2 ,  1 5 t 5 s2,  and X 2 0 Therefore 

any element of R may be written uniquely as 

Now consider the products x ix j ,  where r , ,  r j  are the elements 2f M given 

above. Clearly, r i x j  E M 2 .  Therefore, 

r i x j  = C a ? , z k ,  where afj E F 
k = l  

But z k  E M2 is of the form 

= ~ a v b v ,  awl bv E M ;  v 2 1. 
Y 

But 

i = l  j = 1  

Hence, 
S 

Since zk ( k  = 1 ,  . . . ,  t )  is a basis for M Z  over F, therefore r l x j  ( i ,  j = 1, . s )  

generate M Z .  Therefore, the coefficients in ( I )  form a matrix 
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A = 

a:,  aSs . . . a:, 

of row rank t .  In particular, the matrices (a:,) ( k  = 1 ,  . . . ,  t ) ,  which are 

the t columns of the above coefficient matrix, are linearly independent over F 

Moreover, since for every 1 E (1 ,  . . . ,  s } ,  1 1  $! a n n ( M ) ,  it follows that  there 

exists a j E { I ,  . . . ,  s }  such that  X ~ X ,  # 0 or xlxr # 0. Or equivalently, for 

every 1 E { I ,  . . . ,  s } ,  there exists a k E { I ,  . . ,  I }  and a j E (1, ..., s }  such that  

a:, # 0 or a!! # 0.  

Definition A set of s x s  matrices ( a f j ) ,  . . .  , ( a : ] )  with entries in F are compatzble 

i f  

(i) they are linearly independent over F; and 

(ii) they are such that  for every 1 E (1, . . .  , s ) ,  there exists a k E (1, 

a j E (1, . . . ,  s )  such that a:, # 0 or a;, # 0.  

We next consider the automorphisms u, , Bk; ( i  = 1 ,  . . .  , s ;  k = 1, 

using the associativity of R which requires that  

we have 

- - b " , " ~  
k = l  

Hence, 
t 

x a , k j [ b e k  - b 0 " ~ ] z k  = 0. 
k = l  

But  zk ( k  = 1, . . . ,  t ) ,  are linearly independent over F ,  so that  

t )  and 

1 ) .  By 

for all k = 1,  . . . . ,  t .  Hence, a t j  = 0 or bsk = b u e 0 ~ .  1f a$ # 0, then bsk = b f f a O ~  

and since b  is a primitive element of F, Ok = nir, .  Since the columns of matrix 
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A are linearly independent, they are, in particular, non-zero and sc~  for every 

k = 1, ..., t there exist an at, # 0 and hence 6'k = uiuj. SO the ai's determine 

the Bk 's. 

Therefore the multiplication in R is now given by 

Thus,  up to  isomorphism, the ring R is given by t compatible matrices Ak = (a : ] )  

of size s x s, and by automorphisms ai ,  r, (i = 1, ..., s;  p = 1 ,  . . . ,  A )  

We shall call the compatible matrices Ak the structural matricer of the ring 

R, and if Ak is a singleton with element a, we shall call a the structural constant 

of R.  

We can now give the following: 

CONSTRUCTION A 

Let F be the Galois field GF(pr).  For some integers s ,  t ,  X with 1 5 t 5 s2 ,  

X >_ 0, let U ,  V ,  W be s,  A, t -dimensional F-spaces, respectively. Since F is 

commutative we can think of them as both left and right vector spaces. Let (ah) 

be t compatible matrices of size s x s with entries in F ,  { u l ,  ..., a , ) ,  { r l  , . .  . , r i } ,  

{el,  . . .  , O t }  be sets of automorphisms of F (with possible repetitions) and let 

{ u , }  and { e k }  satisfy the additional condition that  if a$ # 0,  for any k with 

15 k s t ,  then Bk = O , U ~ .  

Consider the additive group direct sum 
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select bases { u ; ) ,  {v,} and { w k )  for U,  V and W, respectively, and define a 

multiplication on R by 

Then this multiplication turns R into a ring a s  we see in the follow~ng theo- 

rem. 

Theorem 4.1 The ring R given by Construction A is a ring wrth property(?;) 

and of characteristic p. Conversely, every such ring is isomorphic to  one gruen 

by Construction A. 

Proof We first show that  R is in fact a ring. We know that  it is a n  additive 

abelian group and has multiplicative identity (1, 0 ,  0 ,  0 ) ,  so it remains to 

check that  the multiplication is associative and distributive over addition. The 

distributive properties can be seen immediately from the definition; however, 

the check for associativity is more elaborate but as it is elementary, it is not 

given here. Furthermore, 

PI = IFI. PI, IVI. IWI 

- - pr . prJ  . p'X , P't 

- - p( l+~++xt ) r  

= pnr,  i fwe  put n =  l + s + X + t ;  

and c h a r R  = p. 

We now show that  R is completely primary and satisfies property(T). 

With the obvious identifications, we can think of F, U ,  V,  W as subsets of 

R. Pu t  M = U @ V @ W .  I t  followsimmediately from the way multiplication was 
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defined that M Z  C W and tha t  M ( V @ W )  = ( V @  W ) M  = 0 .  Hence, M~ = ( 0 ) .  

Also, from the definition of multiplication, it follows that  R M  = kI R C M ,  so 

that  M is an ideal. 

Let now a E F' and z E M .  Since x m  = 0  for some m > 0 ,  we tave  

Thus, I + x is invertible for every z E M .  Then a + x = a(1 + a - 'x )  is the 

product of two invertible elements, and hence is invertible. 

Since I MI = p r ( a + A + t )  and IF* + MI = (pr - l ) (p r (S+A+t) ) ,  i t  follows that  

F' + M = R - M  and hence, all the elements outside M  are invert ble. Hence, 

R I M  % G F ( p r )  and therefore, R is completely primary and saq,isfies prop- 

erty (T) 

To prove the converse, i t  is sufficient to  notice that  the consider~.tions before 

Construction A establish tha t  all rings of characteristic p satisfying property(T) 

are like the ones given in Construction A .  

We complete this section with a theorem concerning the case 'u here the 

Galois subfield F lies in the center of the ring R with property ( T )  and 

characteristic p. 

Theorem 4.2 Let R be a ring of Construction A. Then the field F lies In the 

centre of R if and only i fmi  = T, = Bk = i d F ,  for a11 i = 1 ,  ..., S, p = 1, . . . ,  A; 

k = I ,  ..., t .  

Proof If ai = T, = ok = i d F ,  for all i = 1, ..., s ;  p = 1, ..., )i. k = 1, ..., t ;  

that  F lies in the centre of R follows trivially from the multiplicat~on defined in 

C~ns t~ruc t ion  A. 

Hence, suppose F lies in the centre of R. Let b  E F be primitive. Then 

( 0 ,  Uir u p ,  w k ) .  (b ,  0 ,  0 ,  0 )  = (b ,  0 ,  0 ,  0 ) .  ( 0 ,  ui, u p ,  w k ) ,  
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that is 

(0, bU'u,,  6"vP,  6'' ~ k )  = (0, hi, b ~ p ,  b ~ k ) .  

Therefore, 6''' = b, brr = 6 ,  be* = b ,  and since b is a primitive element of F, it 

follows that  cr, = r,, = ek = i d F ;  for all i = 1, . . . ,  s ;  p = 1, ..., A; k  = 1, . . . ,  f .  

Corollary 4.3 Let R be a ring of Construction A .  Then R rs commutatrve rf  

and only rf  a, = ek = r,, = i d F ;  and a:, = a:,, for all i ,  j = 1, . . . ,  s; 

p = l ,  . . . ,  A ; k = l ,  ..., t .  

This completes the characterization of all rings with property(T) and of 

characteristic p. 

We remark that  if R is a ring with property(T),  we shall call the integers p,  

n, T ,  s, t and A ,  rnvariants of R. 

It  is clear that  what we have named invariants are indeed tha t ,  tha t  is, 

isomorphic rings have the same invariants. On  the other hand, it is easy to find 

examples of non-isomorphic rings with property(T) and characteristic p with 

the same invariants. 

5 Enumeration of rings with property(?') and 

characteristic p 

In this section, we consider the problem of finding the number of distinct ( u p  

to isomorphism) types of rings with property(T) and of characteristic p 

Let R be a ring with property(T) and characteristic p in which the maximal 

Galois subfield F lies in the center. Then R is a ring of Construction A with 

ui = r, = Bk = i d R o ,  for all i = I ,  ..., s ;  p = 1,  ..., A;  k = 1 ,  . . . ,  t (Theorem 4 . 2 ) ,  

so that  R has a multiplication 
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and the only parameters left in defining R  are the t compatible matrices (a!,) 

of size s x s with entries in F. 

Notice that  since M Z  C a n n ( M ) ,  we can write 

R =  F $ U  $ N, where N = V $  W ,  

and if we denote u l ,  ..., v~ by w t + l ,  ..., w t + ~ ,  respectively, then the above 

multiplication for R becomes 

where af; = 0 ,  for all k = t + 1, ..., t + A .  

It  is therefore easy to  see that  the description of the rings of this type reduces 

to  the case where a n n ( M )  coincides with M2. Therefore, to  enumerirte the rings 

of this type of a given order, say pnr ,  where a n n ( M )  does not coincide with 

M Z ,  we shall first write all the rings of this type of order 5 pnr ,  where a n n ( M )  

coincides with M2. 

In what follows, we assume that  a n n ( M )  = M'. 

Remark Let R  be the ring given by the above multiplication with respect to  

the compatible matrices Ak = (a;,) E M, (F) (k = 1, ..., t ) .  

Let A = {Ak : k = 1, . . . ,  t ) ,  and denote the ring R  by R(A) or R({Ak)). 

Up to isomorphism, the ring R(A) is given by t compatible matrices Ak = (a:,) 

of size s x s, and as before we call the compatible matrices Ak, the structural 

matrices of the ring R(A). We also recall tha t  if JR(A)I = p n r ,  the integers p, 
I 

n,  r ,  s, t are invariants of R(A). 

Let now R' be another ring of the same type with the same invariants p, 

n, r ,  s, t ;  with respect t o  compatible matrices Dk = (dfj) over the common 
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maximal Galois subfield F. Denote this ring by R ( D ) ,  where 

D = {Dk : k = 1,  . . . ,  t ) .  Our problem is to  determine which choices of A give 

distinct rings up to isomorphism. This  is facilitated by the lemma below. 

We take this opportunity to  introduce the symbol M a  to  denote ~ ( ( a , , ) )  i f  

M = ( a i j ) .  

Lemma 5.1 Wi th  the above notat ion, 

if and only if there exist a E A u t ( F ) ,  B = ( /?kp) E G L ( t ,  F )  and C E G L ( s ,  F) 

such that 
t 

P r o o f  Suppose there is an isomorphism 

Then, 4 ( F )  is a maximal subfield of R ( D )  so that  there exists an invertible 

element w E R ( D )  such that  wd(F)w- '  = F. 

Now, consider the map  

Then,  clearly, $J is an isomorphism from R ( A )  t o  R ( D )  which sends F t o  itself. 

Also, 

and 

Therefore. 
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On the other hand, 

It follows that  

Now, + I F  is an automorphism of F ;  and therefore, 

for some a E Aut (F) .  Hence, (2)  implies that  

t 

ET D,E = C p k p ~ ; ,  with E  = ( a p j ) ;  
k = l  

that  is, 

as required 

Now, suppose there exist o E Aut (F) ,  B = ( P k p )  E G L ( t ,  F )  and C E 

GL(s ,  F )  with 

Dp = 2 ~ , C T A Z C .  
k = l  

Consider the m a p  
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Then, it  is easy t o  verify tha t  $J is an isomorphism of the ring R ( A )  onto the 

ring R ( D ) .  

As a result of this lemma, the set 

gives all the rings of Construction A which are isomorphic t o  R ( { A k } ) .  

Corollary 5.2 Let A and D be sets of compatible matrices with entries from 

F .  If A and D generate the same space over F ,  then R ( A )  5 R ( D ) .  

Proof This  is a direct consequence of Lemma 5.1,  with C = I, and a = idF  

Next, we interpret Lemma 5.1 interms of bilinear forms 

Lemma 5.3 Let U be an s-dimensional F-space with bases ( u l ,  ..., u s )  and 

( v l ,  ..., v,) and B a t-dimensional F-space of  bilinear forms on U with bases 

( f i ,  ..., f t )  and ( g l ,  ..., gt ) .  For each k = 1 ,  ..., 1,  let Ak = (a!,) and Dk = ( d f ; )  

be matrices of f k  andgk with respect to  ( u l ,  . . . ,  u , )  and ( v r ,  . . . ,  v , ) ,  respectavely. 

Then 

where B = @kp)  and C = ( a i j )  are the tmnsitton matrzces from ( f l  , ..., f,) and 

( u l ,  ..., u , )  to ( g l ,  ..., gr) and ( v l ,  ..., v , ) ,  respecttvely. 

Proof We have 

v ,  = 2 oViuu ,  for i = 1, , s ;  
u=l 

and 
t 

gp = Chpfk, for P = 1, ..., t .  
k = l  

Now, by the bilinearity of f k ,  
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that  is, 

from which the result follows. 

Definition If ( A 1 ,  ..., At) and ( D l ,  . . . ,  D l )  are matrices corresponding t o  

bases ( f l ,  ..., fc) and (gl ,  ..., gt) of F-spaces A and 2) of bilinear forms on 

s-dimensional F-spaces U and V ,  respectively, then we shall say Zl is equivalent 

t o  A if there exist invertible matrices B = (Pk,) and C such that  for each 

p = I ,  ..., t ,  
t 

D, = 
k = l  

It is readily seen that  the relation of being equivalent, defined above, is an 

equivalence relation on spaces of bilinear forms. 

Notice that  the formula in Lemma 5.1 matches that  in Lemma 5.3 if we 

take u to  be the identity automorphism on F. In particular, if th.5 rings under 

consideration are constructed from prime subfields Fp,  or if the rings are com- 

mutative, then the formulae in the two Lemmata will be the same.  Therefore. 

there is a connection between isomorphism classes of commutative rings with 

property(T) and characteristic p with the same invariants p, n ,  r ,  ::, t ;  and rings 

with property(T) and characteristic p with prime subfields Fp v i t h  the same 

invariants p ,  n ,  s, t ;  and equivalence classes of t-dimensional F-spices  of bilinear 

forms on s-dimensional F-spaces U. 

In view of the above, we have the following: 

Theorem 5.4 Two rings with pruperty(T) and characteristic p and of same 

order, with maximal Galois subfield Fp and wzth scme invariants p ,  n ,  s ,  t ,  

are  isomorphic if and only if the corresponding spaces of bilinmr forms are  

equivalent. Also, two commutative rings wzth property(T) and characterzsttc p 

and of the same order with same invariants p, n ,  r ,  s, t are isomorphic zf and 

only if the corresponding spaces of billnear forms are equivalent. 
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6 Rings with property(T) and characteristic pY, 

In this section, we describe the remaining cases of rings with property(T), 

namely, those of characteristic p2 and p3, and give their general construction in 

Consturction B. 

6.1 Rings of characteristic p2 

Let R be a ring with property(T) and characteristic p2. Then R contains an 

element b of order pr - 1 such that b + M is a primitive element of R I M ,  M 

being the unique maximal ideal of R. Let R, = Zp=[b]. Then Ro is a Galois 

subring of R of order p2r and characteristic p2 (see 1.4 and 1.8). The maximal 

ideal of Ro is 

M, = p ~ ,  = M n R,, 

Let $ be the canonical map from R, onto R o / M o .  Since b has order pr - 1 

and M o  c M ,  we have that $ ( b )  is a primitive element of R, /M,  T h e n ,  by 

1.8, every element of R, can be written uniquely as A,+Xlp, where A, ,  X1  E K O .  

Now, by 1 .6 ,  we know that 

R = R, $ Roml $ . . . $ Romh,  where mi E M 

and we know that there exist 01, ..., uh E Aut(R,) such that mi7 = ralm, ,  for 

all r E R,, and for all mi E M. Clearly, 

Since M 3  = (0) and M Z  c a n n ( M ) ,  with M2 # (0) ,  we can write 

where, X I ,  . . . ,  XJ E M - a n n ( M ) ,  yl, ..., y~ E a n n ( M ) - M Z  and z l ,  ...., z, E M2.  

Accordingly, we write 

{ u l ,  ..., u ~ ) = { Q ~ ,  ..., u,, TI, ..., TX, e l ,  . . . ,  e,) ,  
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where s +  X + t  = h .  

In view of the above considerations and by 1.8, since pm = 0, for all m E 

ann(M) ,  we have either 

(i) p E M2; 

(ii) p E ann(M)  - M ~ ;  or 

(iii) p E M - ann(M) .  

We consider these cases separately. 

Case ( i ) .  p E M2.  

In this case, 1 5 1 + t  5 s2; X 2 0,  by Proposition 3.2.  Hence, every element 

of R may be written uniquely as 

Clearly, xixj E M 2 .  Therefore, 

t 

t i t j  = a r j p  + afjzk , where a:, , afij E R,/pR,, ( 3 )  
k = l  

Now, since p ,  z k  E M 2  (k = 1 ,  ..., t ) ,  we can write them as sums of products 

of elements of M .  In particular, p ,  z k  can be written as linear combinations of 

xixj with coefficients in R,/pR,. Hence, since p , z k  ( k  = 1, ..., .t 1 form a basis 

for M2 over R,/pR,, we conclude that  xix, (i ,  j = 1, ..., s )  generate M2 over 

R,/pR,. Therefore, the coefficients in (3) form a matrix 

of row rank 1 + t .  In particular, the matrices (a:) (k = 0, 1,  . . . ,  t ) ,  which are 

the 1 + t  columns of the above coefficient matrix, are linearly independent over 

R,/pR,. Moreover, since for every 1 E (1,  . . . ,  s } ,  X I  g' a n n ( M ) ,  it follows that  

there exists a j E 11, ..., s)  such that  xlxj # 0 or xjxl # 0. O r  equivalently. 

for every 1 E { I ,  ..., s ) ,  there exists a k E (0,  1, . . . ,  t }  and a j E (1, . . . ,  s }  
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such that  a: # 0 or a:, # 0. As in Section 4,  the s x s matrices ( a ; ) ,  ,.., 

with entries in Ro/pRo are compatible. 

Next consider the automorphisms ui, 9k; (i = 1, ..., S; k = 1 ,  ..., t ) .  By 

using the associativity of R which requires that  

we have 
t t 

pap, ( b  + p ~ , )  + C a;,(b + p ~ , ) ' ~ z k  = ( b  + ~ R ~ ) ~ ~ ~ J  [papj + a f , ~ k ] .  

Hence, 

pa:,[(b + PRO) - ( b  + pRo)"'03] = 0 ;  

and 
t 

But p ,  z k ,  ( k  = 1 ,  ..., t ) ,  are linearly independent over R,/pR,; so that  

and 

Hence, 

and 

a:,[(b + pR,) - ( 6  + ~ R , ) " * " J ]  = 0;  

af ,[(b  + - ( b  + pR,)"'"'] = 0 ,  for all k = 1, . . ,  2 .  

ayj = 0 or ( 6  + pR,) = ( 6  + P R ~ ) " ~ " J  ; 

a:, = 0 or ( 6  + = ( 6  + pR0)" '"~ ,  

Suppose that a:, # 0. Then (b+pR,) = (b+pRo)utu~.  But b+pR, is a primitive 

element of R,/pR,, so that  uiuj =  id^, . Also, if a!, # 0, then flk = u;uj. Since 

the columns of matrix A are linearly independent, they are, in particular, non- 

zero and so there exist a n  a:, # 0 and for every k = 1, . . . ,  t there exist an 

a f ;  # 0 ,  and hence uiuj = i d R ,  and O k  = aiuj. So the ui determine the B k .  

Therefore the multiplication in R is now given by 
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Thus, up to isomorphism, the ring R is given by 1 + t compatible matrices 

Ak = (a:) of size s x s, and by automorphisms ai, rp (i = 1, ...,  S ;  11 = 1, . . . ,  A )  

with o ia j  = i dR ,  whenever a:, # 0. 

As before, we shall call the compatible matrices Ak the structural matrices of 

the ring R and if Ak is a singleton with element a ,  we shall call a the structural 

constant of R. 

Case (ii). p E a n n ( M )  - M2. 

The argument is the same as in the previous case. However, in this case. 

the ring R is given by t compatible matrices Ak = (a:,) of size s i s ,  and by 

automorphisms (T,, O k ,  T,, with Ok = u,uj whenever a:, # 0 ( i  = 1,  . . . ,  s; p = 

1, . . . ,  A ;  k = l ,  ..., t ) .  

Hence, the multiplication in R is given by 

Case (iii). p  E M - a n n ( M ) .  

Suppose that  d 2 0 is the number of the elements p x ,  which are not zero, 

where 1 1 , .  . .z, E M - a n n ( M ) .  Suppose, without loss of generality, that  
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px l ,  ..., pxd are the d non-zero elements. Then,  by Proposition 3.2, we have 

1 < d +  t _< (1  + s)'; A 2 0. Hence, every element of R may be written uniquely - 
as 

Clearly, the products xixj E M2. Hence, 

d t 

z i t ,  = a!jPx,  + a y d z k ,  where a i j ,  a y d  E R o / p R o .  ( 4 )  
1=1 k = 1  

Now, since pxl, zk E M 2  ( 1  = 1, ..., d ;  k = 1, ..., t ) ,  we can write them as 

sums of products of elements of M. In particular, pxi, zk can be written as 

linear combinations of pxi and xixj with coefficients in R,/pRo.  Hence, since 

pxl , zk ( I  = 1, ..., d ;  k = 1, ..., t )  is a basis for M2 over R o / p R o ,  we conclude 

that  px; and xixj (i, j = 1 ,  ..., s) generate M2. Therefore, the coefficients in 

(4) form a matrix 

a  . at,  . . .  ass d+t ) 
of row rank d+t. In particular, the matrices ( a l j )  and (afETd) ( 1  = 1, . .  ., d ;  k = 

1, ..., t ) ,  which are the d + t  columns of the above coefficient matr ix,  are 

linearly independent over Ro/pR, .  Moreover, since for every h E (1, ..., s), 

xh $ a n n ( M ) ,  it follows that  there exists a j E (1, ..., s) such t h a t  xhx, # 0 

or xjxh # 0. Or equivalently, for every h E (1, ..., s), there exists a K E 

(1, ..., t  + d )  and a j E { I ,  ..., s) such that  a:, # 0 or a;h # 0. As in the 

previous cases, the s x s matrices (a: j ) ,  ..., ( a f f d )  with entries in R, /pRo are 

compatible. 

We next consider the automorphisms ai, B k ;  ( i  = 1,  . . . ,  S; k = 1, . . . ,  t ) .  By 

using the associativity of R which requires that  

it is easy to  show that for every 1 = 1, ..., d there exist an atj # 0 and for every 
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k = 1, ..., t there exist an # 0 ,  and hence 0 1  = aiaj and Bk = ainj.  In 

particular the ai determine the B k .  

Therefore, the multiplication in R is now given in a suitable. manner as 

in the previous cases with obvious notation. Thus, the compatit'le matrices 

( a j j ) ,  ..., (a:Td), and the automorphisms ui,  r, determine ~omplet~ely the mul- 

tiplicative structure of R. 

6.2 Rings of characteristic p3 

In this case, let R, = Z p a ( b ] .  Then, the argument is similar to that given in the 

case where charR = p2. However, in this case, p E M - a n n ( M )  and p2 E M2 

and thus, if a:, # 0, then aiaj = i d R o ;  if a:,j # 0, with I = 1, . . . ,  d, then 

q = aioj and if a Y d  # 0, with k = 1, ..., t then Bk = ginJ. 

We can now give the following: 

CONSTRUCTION B 

Let R, be the Galois ring CR(p2', p2) or GR(p3', p 3 ) .  Let s ,  d ,  t ,  X be 

integers with either 1 < t < s 2 ,  1 < 1 + t < sZ or 1 5 d  + t < s 2  i f  ':harRo = P2 

or 1 < 1 + d  + t < (1 + s2 )  if charR, = p3, and X 2 0. Let V,  fir be R,/pR,- 

spaces which when considered as R,-modules have generating sets { v l ,  ..., v ~ )  

and { w l ,  ..., w t } ,  respectively. Let U be an R,-module with all R,-module 

generating set {ul ,  . . . , u,); and suppose that d 2 0 of the u, are such that 

pui # 0 .  Since R, is commutative, we can think of them as both left and right 

R,-modules. 

Let (o f j ) ,  for I = 0 ,  1 ,  ..., t ,  1 + t or d + t ,  be s x s cornpa,tible matrices 

with entries in R,/pRo if  char^, = p2 or 1 = 0, 1, .. . ,  d + t be (1 + s) x (1  + s )  

compatible matrices with entries in R,/pR, if charR, = p3. Let { u , ,  . . . ,  o,}, 

{ r l ,  ..., r x ) ,  {el, ..., Bt} be sets of automorphisms of R, (with pcissible repeti- 

tions) and let { a i } ,  {Bk} satisfy the additional conditions that 

( i )  if a:, # 0 ,  then uiaj =  id^.; 

(ii) if a!j # 0 ,  for any h with h = 1, . . . , d, then uiaj = ut,; and 

(ii) if ayTk # 0 ,  for any k with k = 1, ..., t ,  then B k  = u,uj .  
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Consider the additive group direct sum 

and define a multiplication on R by 

where j = 1 or 2 ,  depending on whether charR,  = p2 or p3 

Then this multiplication turns R into a ring as we see in the following theo- 

rem. 

Theorem 6.1 The rtng R gtven b y  Constructton B ts a rzng wrth property(T) 

and of charactertsttc p2 or p3. Conversely, any rtng wrth property(?;) and of 

characterrstrc p2 or p3, ts tsomorphrc to one grven b y  Constructton B 

Proof We give the proof for the case of rings of characteristic p3. T h e  other 

case will then follow by simple modifications. 

First we show that R is in fact a ring. We know that  it is an additive abelian 

group and has multiplicative identity (1, 0 ,  0, 0) where 1 E R,; so it remains to 

check that  the multiplication is associative and distributive over addition. The 

distributive properties can be seen immediately from the definition;, however. 

the check for associativity is more elaborate but as it is almost elementary, it is 

not given here. Furthermore, 
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- - p3r , pr z:=> t ,  , . p t r  

= p(3+C:=,  t,+A+t)r 
3 

= pnr, i f w e p u t n = 3 + x t , + X + t ;  
r = l  

(where p t -  is the additive order of ui), and charR = p 3 .  

We show that  R is completely primary and satisfies property(ll).  With the 

obvious identifications, we can think of R,, U ,  V ,  and W as subsets of R .  Put 

M = pR, $ U $ V $ W. I t  follows immediately from the way rrultiplication 

was defined that  M 2  C p2 Ro + pU + W and t h a t  

M ( ~ ~ R , + ~ u + v + w ) = ( ~ ~ R , + ~ u + v + w ) M  = ( o ) .  

Hence, M3 = (0). Also, from the definition of multiplication it follows that  

RM = M R C M ,  so tha t  M is an ideal. 

Next, let r ,  E R ,  with r ,  4 pR, and let r E M. As in the proof of Theorem 

4.1,  it is easy to  check tha t  r ,  + z is invertible. 

it follows that  Ii', + M = R - M and hence, all the elements outside M are 

invertible. Therefore, R is completely primary and satisfies property(T) 

Now, let R be a ring with property(T) and characteristic p3. To show that  

R is a ring of Construction 5, it is sufficient t o  notice tha t  the considerations 

before Construction B establish that  all the rings of characteristic p3 satisfying 

property(T) are like the ones given in Construction 5. 

Remark As in the previous case, if R is a ring with property('7') and charac- 

teristic p2 or p3, we shall call the integers p,  n ,  r ,  d ,  s ,  t and A ,  invariants of 

R.  We remark tha t  p can be any prime; n ,  r ,  s can be any positive integers 

and d ,  X can be any integers >_ 0, while t is subject t o  the condition that  either 

1 s t  < s 2 ,  1s l + t  5 s 2 0 r  1 < d + t  5 s '  i f c h a r R = p 2 ;  anld that  p c a n  be 
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any prime; n ,  r can be any arbitrary positive integers and s ,  d ,  X can be any 

integers 2 0, while t is subject only to  the condition t h a t  1 5 1 + d + t  < (1+s)2  - 
if char  R = p3 .  

We complete this section with a theorem concerning the case where the 

Galois subring R, lies in the center of a ring R with property(T) and 

characteristic p2 or p 3 .  

Theorem 6.2 Let R be a ring of Construction B. Then the Calozs rrng R, 

hes in the centre of R if and only i f  a; = T,, = Ok =  id^., for a11 i, p and k .  

Proof This can be proved in a similar manner to  Theorem 4 . 2  

Corollary 6.3 Let R be a rmg of Constructton B .  Then R 1s commutatzve zf 

and only 2f cr, = T ,  = Ok = i d R o ,  and ah. = a;,, for all i ,  p ,  k and h .  ' I  

7 Enumeration of Rings with property(?') and 

of characteristic p", v = 2 , 3  

In this section, we consider the problem of finding isomorphism classes of rlngs 

with property(T) and characteristics p2 and p3 .  In particular, we consider the 

case where the maximal Galois subring R, lies in the centre of R,  so that  R is 

a ring of Construction B ,  with cri = T, =  id^,, and hence, 8k = i d &  for all 

i ,  p ,  k (Theorem 6.2) .  

7.1 Rings of characteristic p2 

In Section 6, we saw that  there are three types of rings with property(T) and 

characteristic p2, namely, those in which 

(i) p  E M 2 ;  

(ii) p  E a n n ( M )  - M 2 ;  and 

(iii) p  E M - a n n ( M ) .  

It  is clear from the considerations in Section 6 that  these rings have great 

similarities and to avoid repetition, we opted to treat them under one construc- 
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tion. However, to  avoid considerable loss of clarity, we have opted to treat them 

separately in this section. 

We start with the following: 

C a s e  (i). The c a s e  where p  i s  in M2 

We know that  all the rings of this type are rings of Construction B ,  and so if 

R is such a ring, the only parameters Left in defining R are the s x s compatible 

matrices A, = (a!j) over R, /pR , ,  for 1 = 0, 1, ..., t .  

Since M2  C ann(M), we can write 

R =  R,$U$  N, where N = VfB W,  

and if we denote v l ,  ..., ux by wt+ l ,  ..., wt+x,  respectively, then the above 

multiplication for R in Construction B becomes 

where a!, = 0, for all k = t + 1, ..., t + A. 

It is therefore easy t o  see tha t  the description of rings of this type reduces to  

the case where ann(M) coincides with M2.  Therefore, as before, t o  enumerate 

rings of this type of a given order, say pnr,  where ann(M) does not coincide 

with M2,  we shall first write all the rings of this type of order 5 pnr ,  where 

ann(M) coincides with M2 .  

As before, we assume that  X = 0, in what follows 

Let A  be the set consisting of the compatible matrices A, ,  . . .  , .4, and denote 

the ring with the above multiplication by R ( A )  or R({Ak)) .  Let R(D) be 
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another ring of the same type with the same invariants p, n ,  r ,  s ,  t ,  where D 

is the set consisting of the structural matrices for the ring R ( D ) .  We assume 

that R ( A )  and R ( D )  are constructed from a common maximal Galois subring 

R,. Our problem is to  determine which choices of A give distinct rings up to 

isomorphism. This is facilitated by the following lemma. 

L e m m a  7.1 Let R ( A )  and R ( D )  be rings with property(T) and of characterlstzc 

p2 zn which R ,  lies in  the centre, with the same invariants p, n ,  r ,  s ,  t ,  and in 

which p lies in MZ. Then R(A)  % R ( D )  if and only if there erist a E A u t ( R , ) ,  

B = ( P k p )  E GL(1 + t ,  R, /pR,)  and C E G L ( s ,  R , /pR , ) ,  such that 
t 

P r o o f  Similar to that  for Lemma 5 1 

As a result of this lemma, the set of all rings 

where 

gives all the rings of Construction B in which p lies in M 2  isomorphic to 

R ( { A k ) ) .  

C a s e  ( i i ) .  T h e  c a s e  w h e r e  p l ies  in a n n ( M )  - M 2  

Notice tha t ,  in Case ( i ) ,  we assumed tha t  p E M2.  However, i f  now p E 

a n n ( M )  while p @ MZ,  the discussion is virtually the same as that  given above 

only that in this case the matrix B = ( @ k p )  will be in G L ( t ,  R , /pR , ) .  Therefore. 

we have the following: 

L e m m a  7.2 Let R ( A )  and R ( D )  be rzngs wrth property(T) and of charactertst~c 

p2 tn w h ~ h  R ,  1tes zn the centre, wzth the same tnvorzants p, n ,  r ,  s ,  2 ,  and tn 

whtch p lzes tn a n n ( M )  - M 2  Then R ( A )  E R ( D )  t f  ond only zf there ezzst 

a E P u t ( R , ) ,  B = (Pk , , )  E G L ( t ,  R o / p R o )  and C E G L ( s ,  R , /pR , ) ,  such that 
t 
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As a 'result of this lemma, the set of all rings 

where 

gives all the rings of Construction B in which p lies in a n n ( M )  -Mf isomorphic 

to R({Ak I ) .  

Case(iii). The case where p lies in M - a n n ( M )  

The discussion is the same as in the previous two cases only that in this case 

B = (Pkp) E GL(d+ t ,  Ro/pRo) and hence,we have the following lemma. 

Lemma 7.3 Let R(A) and R(D) be rings with property(T) and chamcteristrc 

p2 in which R, lies in the centre, with the same invariants p, n ,  r ,  s ,  d, t and 

tn whtch p does not lie in a n n ( M ) .  Then R(A) E R(D) if and only if there 

extsts a a E Aut(R,), B = (Pkp) E GL(d + t ,  Ro/pRo), C E GL(s ,  Ro/pRo),  

such that 
d+t 

Thus, as a result of this lemma, the set of all rings 

where 

gives all the rings of Construction B in which p does not lie in ar in(M) isomor- 

phic to R({Ak)). 

7.2  Rings of characteristic p3 

In this case, R is a ring of Construction B with ui = r,, = idHo, and hence, 

Bk = idRe for all i, p ,  k (Theorem 6.2). The following lemma gives a formula to 
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show when two rings of this type and with the same invariants are isomorphic. 

Lemma 7.4 Let R ( A )  and R ( D )  be rings with property(T) and of characteristic 

p3 in which R ,  lies in the centre, with the same inwartants p ,  n ,  r ,  s ,  d ,  t .  

Then R ( A )  2 R ( D )  ~j and only if there exists a a E AutR, ,  B = (PPk) 6 

G L ( l  + d + 1 ,  R o / p R o ) ,  C E G L ( s ,  R o / p R 0 ) ,  such that 

d+t 

Dp = P , ~ c ~ A ~ c ,  where M u  means  ( a ( a , ,  j j ,  if M = (a,,) 
k =O 

Proof Suppose there is an isomorphism 

Then, q5(Ro) is a maximal Galois subring of R ( D )  so that  there exists an in- 

vertible element w € R ( D )  such that  w 4 ( R o ) w - '  = Ro 

Now, consider the map 

$ : ( A )  -+ R ( D )  

r cS w+(r)w-I  

Then, clearly, 4 is an isomorphism from R ( A )  t o  R(D)  which sends Ro to itself 

and $ ( p )  = troop, with cro0 = 1 ;  $ ( P ~ )  = boop2,  with 130, = 1. 

Also, 

and 

Now, since puj E /A2, for all j = 1, ..., d ;  
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which implies that  a,, = P o j ;  a,j = P v j ;  for all v = 1 ,  . . . ,  d; and B,+d,j = 0 ,  

for all q = 1 ,  ..., t .  

Therefore, 

, I I ! I  

* ( O l  u i ,  0 )  . + ( a ,  u j ,  O )  = (ooip, C aviuu. Y ) ' ( a o j ~ .  C Y ) 
u P 

On the other hand, 

$( (0 ,  u, ,  0 )  (0 ,  u j ,  0 )  ) = $(a;p2, Q~,Pul. x a::" ~ h )  

1=1 h = l  

But this implies that  
d+t 

E ~ D , E  = Cpkp~t;  
k =O 

that  is, 

or 

Now, $ I R , I P R .  is 

d t t  

D ,  = C pkpcT~fc. 
k =O 

an automorphism of R,/pR,. But Aut(R,/pifi:,) 2 Aut(R,)  

(see 1 . 3 )  Hence, *lno,sno i s a n  a u t o m r p h i s m  u of R,, and therefore A: = A:. 

with u E Aut(R,) .  
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Conversely, suppose there exist C E C L ( s ,  Ro/pR,),  B = ( P k p )  E CL(1 + 
d + t ,  Ro/pRo) and a E Aut(R,) with 

Consider the map 

Then,  it is route to check that  4 is an isomorphism of the ring R ( A )  onto the  

ring R ( D ) .  

As a result of this lemma, the set of all rings 

where 

gives all the rings of Construction B isomorphic to R ( { A k } ) .  

We have thus formulated the isomorphism problem and it remains to  obtain 

unique representatives of the isomorphism classes. 
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