Mathematical Journal of Okayama University

Volume 50, Issue 1

On Unit Groups of Completely Primary Finite Rings

Chiteng'a John Chikunji*

*Botswana College

Copyright (C) 2008 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

On Unit Groups of Completely Primary Finite Rings

Chiteng'a John Chikunji

Abstract

Let R be a commutative completely primary finite ring with the unique maximal ideal J such that $\mathrm{J} 3=(0)$ and $\mathrm{J} 2 \neq(0)$: Then $\mathrm{R} \& \# \mathrm{x} 2044 ; \mathrm{J} \cong \mathrm{GF}(\mathrm{pr})$ and the characteristic of R is pk , where $1 \leq \mathrm{k} \leq 3$, for some prime p and positive integers k , r . Let $\mathrm{Ro}=\mathrm{GR}$ ($\mathrm{pkr}, \mathrm{pk}$) be a galois subring of R so that $\mathrm{R}=\mathrm{Ro} \oplus \mathrm{U} \oplus \mathrm{V} \oplus \mathrm{W}$, where U, V and W are finitely generated Ro-modules. Let non-negative integers s , t and be numbers of elements in the generating sets for U, V and W , respectively. In this work, we determine the structure of the subgroup $1+W$ of the unit group R^{*} in general, and the structure of the unit group R^{*} of R when $s=3, t=1 ; \geq 1$ and characteristic of R is p. We then generalize the solution of the cases when $s=2, t=1 ; t=s(s+1) \& \# x 2044 ; 2$ for a fixed s; for all the characteristics of R; and when $s=2, t=2$, and characteristic of R is p to the case when the annihilator $\operatorname{ann}(\mathrm{J})=\mathrm{J} 2+\mathrm{W}$, so that ≥ 1. This complements the author's earlier solution of the problem in the case when the annihilator of the radical coincides with the square of the radical.

KEYWORDS: unit groups, completely primary finite rings, galois rings

Math. J. Okayama Univ. 50 (2008), 149-160

ON UNIT GROUPS OF COMPLETELY PRIMARY FINITE RINGS

Chiteng'a John CHIKUNJI

Abstract

Let R be a commutative completely primary finite ring with the unique maximal ideal \mathcal{J} such that $\mathcal{J}^{3}=(0)$ and $\mathcal{J}^{2} \neq(0)$. Then $R / \mathcal{J} \cong G F\left(p^{r}\right)$ and the characteristic of R is p^{k}, where $1 \leq k \leq 3$, for some prime p and positive integers k, r. Let $R_{o}=G R\left(p^{k r}, p^{k}\right)$ be a galois subring of R so that $R=R_{o} \oplus U \oplus V \oplus W$, where U, V and W are finitely generated R_{o}-modules. Let non-negative integers s, t and λ be numbers of elements in the generating sets for U, V and W, respectively. In this work, we determine the structure of the subgroup $1+W$ of the unit group R^{*} in general, and the structure of the unit group R^{*} of R when $s=3, t=1, \lambda \geq 1$ and characteristic of R is p. We then generalize the solution of the cases when $s=2, t=1 ; t=s(s+1) / 2$ for a fixed s; for all the characteristics of R; and when $s=2, t=2$, and characteristic of R is p to the case when the annihilator $\operatorname{ann}(\mathcal{J})=\mathcal{J}^{2}+W$, so that $\lambda \geq 1$. This complements the author's earlier solution of the problem in the case when the annihilator of the radical coincides with the square of the radical.

1. Introduction

Throughout this paper we will assume that all rings are commutative rings with identity, that ring homomorphisms preserve identities, and that a ring and its subrings have the same identity. Moreover, we adopt the notation used in [2] and [3], that is, R will denote a finite ring, unless otherwise stated, \mathcal{J} will denote the Jacobson radical of R, and we will denote the Galois ring $G R\left(p^{n r}, p^{n}\right)$ of characteristic p^{n} and order $p^{n r}$ by R_{o}, for some prime integer p, and positive integers n, r. We denote the unit group of R by R^{*}; if g is an element of R^{*}, then $o(g)$ denotes its order, and $\langle g\rangle$ denotes the cyclic group generated by g. Further, for a subset A of R or $R^{*},|A|$ will denote the number of elements in A. The ring of integers modulo the number n will be denoted by \mathbb{Z}_{n}, and the characteristic of R will be denoted by char R.

A completely primary finite ring is a ring R with identity $1 \neq 0$ whose subset of all zero-divisors forms a unique maximal ideal \mathcal{J}.

Let R be a completely primary finite ring with maximal ideal \mathcal{J}. Then R is of order $p^{n r} ; \mathcal{J}$ is the Jacobson radical of $R ; \mathcal{J}^{m}=(0)$, where $m \leq n$, and the residue field R / \mathcal{J} is a finite field $G F\left(p^{r}\right)$, for some prime p and

[^0]positive integers n, r. The char $R=p^{k}$, where k is an integer such that $1 \leq k \leq m$. If $k=n$, then $R=\mathbb{Z}_{p^{k}}[b]$, where b is an element of R of multiplicative order $p^{r}-1 ; \mathcal{J}=p R$ and $\operatorname{Aut}(R) \cong \operatorname{Aut}(R / p R)$. Such a ring is called a Galois ring, denoted by $G R\left(p^{k r}, p^{k}\right)$. Let $G R\left(p^{k r}, p^{k}\right)$ be the Galois ring of characteristic p^{k} and order $p^{k r}$, i.e., $G R\left(p^{k r}, p^{k}\right)=\mathbb{Z}_{p^{k}}[x] /(f)$, where $f \in \mathbb{Z}_{p^{k}}[x]$ is a monic polynomial of degree r whose image in $\mathbb{Z}_{p}[x]$ is irreducible. If char $R=p^{k}$, then R has a coefficient subring R_{o} of the form $G R\left(p^{k r}, p^{k}\right)$ which is clearly a maximal Galois subring of R. Moreover, there exist elements $m_{1}, m_{2}, \ldots, m_{h} \in \mathcal{J}$ and automorphisms $\sigma_{1}, \ldots, \sigma_{h} \in$ $\operatorname{Aut}\left(R_{o}\right)$ such that
$$
R=R_{o} \oplus \sum_{i=1}^{h} R_{o} m_{i}\left(\text { as } R_{o}-\text { modules }\right), m_{i} r=r^{\sigma_{i}} m_{i}
$$
for every $r \in R_{o}$ and any $i=1, \ldots, h$. Further, $\sigma_{1}, \ldots, \sigma_{h}$ are uniquely determined by R and R_{o}. The maximal ideal of R is
$$
\mathcal{J}=p R_{o} \oplus \sum_{i=1}^{h} R_{o} m_{i}
$$

Let R be a completely primary finite ring (not necessarily commutative). The following facts are useful (e.g. see [2, §2]): The group of units R^{*} of R contains a cyclic subgroup $\langle b\rangle$ of order $p^{r}-1$, and R^{*} is a semi-direct product of $1+\mathcal{J}$ by $\langle b\rangle$; the group of units R^{*} is solvable; if G is a subgroup of R^{*} of order $p^{r}-1$, then G is conjugate to $$ in R^{*}; if R^{*} contains a normal subgroup of order $p^{r}-1$, then the set $K_{o}=\cup\{0\}$ is contained in the center of the ring R; and $\left(1+\mathcal{J}^{i}\right) /\left(1+\mathcal{J}^{i+1}\right) \cong \mathcal{J}^{i} / \mathcal{J}^{i+1}$ (the left hand side as a multiplicative group and the right hand side as an additive group).

Now let R be a commutative completely primary finite ring with maximal ideal \mathcal{J} such that $\mathcal{J}^{3}=(0)$ and $\mathcal{J}^{2} \neq(0)$. The author gave constructions describing these rings for each characteristic and for details, we refer the reader to sections 4 and 6 of [1]. Then $R / \mathcal{J} \cong G F\left(p^{r}\right)$ and the characteristic of R is p^{k}, where $1 \leq k \leq 3$. Let $R_{o}=G R\left(p^{k r}, p^{k}\right)$ be a galois subring of R. Then $R=R_{o} \oplus \sum_{i=1}^{h} R_{o} m_{i}$ and the maximal ideal of R is $\mathcal{J}=p R_{o} \oplus \sum_{i=1}^{h} R_{o} m_{i}$. Moreover, from Constructions A and B in [1],

$$
R=R_{o} \oplus U \oplus V \oplus W
$$

and

$$
\mathcal{J}=p R_{o} \oplus U \oplus V \oplus W
$$

where the R_{o}-modules U, V and W are finitely generated. The structure of R is characterized by the invariants p, n, r, d, s, t and λ; and the
linearly independent matrices $\left(\alpha_{i j}^{k}\right)$ defined in the multiplication. In [1], $d \geq 0$ denotes the number of the $m_{i} \in\left\{m_{1}, \ldots, m_{h}\right\}$ with $p m_{i} \neq 0$.

Let s, t, λ be numbers in the generating sets for the $R_{o}-$ modules U, V, W, respectively. In [2] we have determined the unit group R^{*} of the ring R when $s=2, t=1, \lambda=0$ and characteristic of R is p and when $t=s(s+1) / 2, \lambda=$ 0 , for a fixed integer s, for all the characteristics of R. In [3] we obtained the structure of R^{*} when $s=2, t=1, \lambda=0$ and characteristic of R is p^{2} and p^{3}; and the case when $s=2, t=2, \lambda=0$ and characteristic of R is p. In both papers [2] and [3], we assumed that $\lambda=0$ so that the annihilator of the maximal ideal \mathcal{J} coincides with \mathcal{J}^{2}.

In Section 2, we show that $1+\mathcal{J}$ is a direct product of its subgroups $1+p R_{o} \oplus U \oplus V$ and $1+W$ and further determine the structure of $1+W$, in general; and in Section 3, we determine the structure of R^{*} when $s=3, t=$ $1, \lambda \geq 1$ and $\operatorname{char} R=p$. In the final Section, we generalize the structure of R^{*} in the cases when $s=2, t=1 ; t=s(s+1) / 2$, for a fixed integer s, and for all characteristics of R; and when $s=2, t=2$ and $\operatorname{char} R=p$; determined in [2] and [3], to the case when $\operatorname{ann}(\mathcal{J})=\mathcal{J}^{2}+W$ so that $\lambda \geq 1$. This complements our earlier solution to the problem in the case when $\operatorname{ann}(\mathcal{J})=\mathcal{J}^{2}$.

Notice that since R is of order $p^{n r}$ and $R^{*}=R-\mathcal{J}$, it is easy to see that $\left|R^{*}\right|=p^{(n-1) r}\left(p^{r}-1\right)$ and $|1+\mathcal{J}|=p^{(n-1) r}$, so that $1+\mathcal{J}$ is an abelian p-group. Thus, since R is commutative,

$$
\left.R^{*}=\langle b\rangle \cdot(1+\mathcal{J}) \cong<b\right\rangle \times(1+\mathcal{J})
$$

a direct product of the $p-$ group $1+\mathcal{J}$ by the cyclic subgroup $\langle b\rangle$.

2. The structure of $1+W$

Let R be a commutative completely primary finite ring with maximal ideal \mathcal{J} such that $\mathcal{J}^{3}=(0)$ and $\mathcal{J}^{2} \neq(0)$. Let $R_{o}=G R\left(p^{k r}, p^{k}\right)(1 \leq k \leq 3)$ and let non-negative integers s, t and λ be numbers in the generating sets $\left\{u_{1}, \ldots, u_{s}\right\},\left\{v_{1}, \ldots, v_{t}\right\}$ and $\left\{w_{1}, \ldots, w_{\lambda}\right\}$ for finitely generated $R_{o}-$ modules U, V and W, respectively, where $t \leq s(s+1) / 2$ and $\lambda \geq 1$. Then $R=R_{o} \oplus U \oplus V \oplus W$ and hence,

$$
\begin{aligned}
& R=R_{o} \oplus \sum_{i=1}^{s} R_{o} u_{i} \oplus \sum_{j=1}^{t} R_{o} v_{j} \oplus \sum_{k=1}^{\lambda} R_{o} w_{k}, \\
& \mathcal{J}=p R_{o} \oplus \sum_{i=1}^{s} R_{o} u_{i} \oplus \sum_{j=1}^{t} R_{o} v_{j} \oplus \sum_{k=1}^{\lambda} R_{o} w_{k}
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{ann}(\mathcal{J})=p R_{o} \oplus \sum_{j=1}^{t} R_{o} v_{j} \oplus \sum_{k=1}^{\lambda} R_{o} w_{k} \text { or } p^{2} R_{o} \oplus \sum_{j=1}^{t} R_{o} v_{j} \oplus \sum_{k=1}^{\lambda} R_{o} w_{k} \\
\mathcal{J}^{2}=p R_{o} \oplus \sum_{j=1}^{t} R_{o} v_{j} \text { or } p^{2} R_{o} \oplus \sum_{j=1}^{t} R_{o} v_{j}
\end{gathered}
$$

and $\mathcal{J}^{3}=(0)$. Hence,

$$
1+\mathcal{J}=1+p R_{o} \oplus \sum_{i=1}^{s} R_{o} u_{i} \oplus \sum_{j=1}^{t} R_{o} v_{j} \oplus \sum_{k=1}^{\lambda} R_{o} w_{k}
$$

The following proposition and its corollary play an important role in determining the structure of $1+\mathcal{J}$.
Proposition 2.1. If $\lambda \geq 1$, then $1+\sum_{i=1}^{\lambda} \oplus R_{o} w_{i}$ is a subgroup of $1+\mathcal{J}$.
Proof. This follows easily since for any two elements $1+\sum \alpha_{i} w_{i}$ and $1+$ $\sum \beta_{i} w_{i}$ in $1+\sum_{i=1}^{\lambda} \oplus R_{o} w_{i}$, we have

$$
\left(1+\sum \alpha_{i} w_{i}\right)\left(1+\sum \beta_{i} w_{i}\right)=1+\sum\left(\alpha_{i}+\beta_{i}\right) w_{i}
$$

an element in $1+\sum_{i=1}^{\lambda} \oplus R_{o} w_{i}$.
Corollary 2.2. $1+\operatorname{ann}(\mathcal{J})$ is a subgroup of $1+\mathcal{J}$.
The following result simplifies most of the work in the sequel.
Proposition 2.3. The $p-$ group $1+\mathcal{J}$ is a direct product of the subgroups $1+p R_{o} \oplus \sum_{i=1}^{s} R_{o} u_{i} \oplus \sum_{j=1}^{t} R_{o} v_{j}$ by $1+\sum_{i=1}^{\lambda} \oplus R_{o} w_{i}$.

Proof. Follows easily because $\sum_{i=1}^{\lambda} \oplus R_{o} w_{i} \subseteq \operatorname{ann}(\mathcal{J})$ and a routine check shows that

$$
\begin{aligned}
& \left(1+p R_{o} \oplus \sum_{i=1}^{s} R_{o} u_{i} \oplus \sum_{j=1}^{t} R_{o} v_{j}\right) \times\left(1+\sum_{i=1}^{\lambda} \oplus R_{o} w_{i}\right) \\
= & 1+p R_{o} \oplus \sum_{i=1}^{s} R_{o} u_{i} \oplus \sum_{j=1}^{t} R_{o} v_{j} \oplus \sum_{k=1}^{\lambda} R_{o} w_{k} \\
= & 1+\mathcal{J} .
\end{aligned}
$$

Since the structure of $1+p R_{o} \oplus \sum_{i=1}^{s} R_{o} u_{i} \oplus \sum_{j=1}^{t} R_{o} v_{j}$, for $s=2, t=1$; $s=2, t=2$ and $\operatorname{char} R=p$, and $t=s(s+1) / 2$ for a fixed s, have
been determined in [2] and [3], and following Proposition 2.2, it suffices to determine the structure of $1+W=1+\sum_{i=1}^{\lambda} \oplus R_{o} w_{i}$. We do this for every characteristic $p^{k}(1 \leq k \leq 3)$ of R.

We first note that $p w_{i}=0$ for each $w_{i} \in W(i=1, \ldots, \lambda)$, since $W \subseteq$ $\operatorname{ann}(\mathcal{J})=\mathcal{J}^{2}+W$.

Proposition 2.4. The group $1+\sum_{i=1}^{\lambda} \oplus R_{o} w_{i} \cong \underbrace{\mathbb{Z}_{p}^{r} \times \ldots \times \mathbb{Z}_{p}^{r}}_{\lambda \geq 1 \text { times }}$, for any prime integer p such that $p^{k}=\operatorname{char} R(1 \leq k \leq 3)$.

Proof. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r}$ be elements of R_{o} with $\varepsilon_{1}=1$ so that $\overline{\varepsilon_{1}}, \overline{\varepsilon_{2}}, \ldots, \overline{\varepsilon_{r}} \in$ $R_{o} / p R_{o} \cong G F\left(p^{r}\right)$ form a basis of $G F\left(p^{r}\right)$ over its prime subfield $G F(p)$. First notice that, for $1+\varepsilon_{j} w_{i} \in 1+\sum_{i=1}^{\lambda} \oplus R_{o} w_{i}$, and for each $j=1, \ldots, r$; $\left(1+\varepsilon_{j} w_{i}\right)^{p}=1$ and $g^{p}=1$ for all $g \in 1+\sum_{i=1}^{\lambda} \oplus R_{o} w_{i}$, where p is a prime integer such that $p^{k}=\operatorname{char} R(1 \leq k \leq 3)$.

For integers $l_{j}, m_{j}, \ldots, n_{j} \leq p$, we assert that

$$
\prod_{j=1}^{r}\left\{\left(1+\varepsilon_{j} w_{1}\right)^{l_{j}}\right\} \times \prod_{j=1}^{r}\left\{\left(1+\varepsilon_{j} w_{2}\right)^{m_{j}}\right\} \times \ldots \times \prod_{j=1}^{r}\left\{\left(1+\varepsilon_{j} w_{\lambda}\right)^{n_{j}}\right\}=1
$$

will imply that $l_{j}=m_{j}=\ldots=n_{j}=p$, for all $j=1, \ldots r$.
If we set

$$
\begin{aligned}
F_{j} & =\left\{\left(1+\varepsilon_{j} w_{1}\right)^{l}: l=1, \ldots, p\right\} \\
G_{j} & =\left\{\left(1+\varepsilon_{j} w_{2}\right)^{m}: m=1, \ldots, p\right\}, \ldots \\
H_{j} & =\left\{\left(1+\varepsilon_{j} w_{\lambda}\right)^{n}: n=1, \ldots, p\right\}
\end{aligned}
$$

for all $j=1, \ldots, r$; we see that $F_{j}, G_{j}, \ldots, H_{j}$ are all cyclic subgroups of $1+$ $\sum_{i=1}^{\lambda} \oplus R_{o} w_{i}$ and these are all of order p as indicated in their definition. The argument above will show that the product of the λr subgroups F_{j}, G_{j}, \ldots, and H_{j} is direct. So, their product will exhaust $1+\sum_{i=1}^{\lambda} \oplus R_{o} w_{i}$.

3. The case when char $R=p, s=3, t=1$ And $\lambda \geq 1$

Let the characteristic of the ring R be p and let $s=3, t=1$ and $\lambda \geq 1$. Then

$$
R=\mathbb{F}_{q} \oplus \mathbb{F}_{q} u_{1} \oplus \mathbb{F}_{q} u_{2} \oplus \mathbb{F}_{q} u_{3} \oplus \mathbb{F}_{q} v \oplus \sum_{i=1}^{\lambda} \oplus \mathbb{F}_{q} w_{i}
$$

and

$$
\mathcal{J}=\mathbb{F}_{q} u_{1} \oplus \mathbb{F}_{q} u_{2} \oplus \mathbb{F}_{q} u_{3} \oplus \mathbb{F}_{q} v \oplus \sum_{i=1}^{\lambda} \oplus \mathbb{F}_{q} w_{i}
$$

where $\mathbb{F}_{q}=G F\left(p^{r}\right)$, the Galois field of p^{r} elements, for any positive integer r, and prime integer p, and we have

$$
u_{i} u_{j}=a_{i j} v, \text { where } a_{i j} \in \mathbb{F}_{q}
$$

The symmetric matrix $A=\left(a_{i j}\right)$ is non-zero and one verifies that any such matrix gives rise to a ring of the present type. If we change to new generators $u_{i}^{\prime}, v^{\prime}, w_{i}^{\prime}$ with corresponding matrix A^{\prime}, then $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$ are linear combinations of u_{i}, v, w_{i}. Since $\mathcal{J}^{3}=(0)$, we may assume that the coefficients of v and w_{i} are zero and write $u_{i}^{\prime}=p_{1 i} u_{1}+p_{2 i} u_{2}+p_{3 i} u_{3}$, so that $P=\left(p_{i j}\right)$ is the transition matrix from the basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of $\mathcal{J} / \operatorname{ann}(\mathcal{J})$ to the basis $\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right\}$. If also $v^{\prime}=k v\left(k \in \mathbb{F}_{q}^{*}\right)$ and we now calculate $u_{i}^{\prime} u_{j}^{\prime}$ and compare coefficients of v, we obtain an equation which, in matrix form is

$$
P^{t} A P=k A^{\prime}
$$

where P^{t} is the transpose of the matrix P. The problem of classifying the present class of rings up to isomorphism is now readily seen to amount to that of classifying symmetric matrices A under the above equivalence relation, in which $P \in G L_{3}\left(\mathbb{F}_{q}\right), k \in \mathbb{F}_{q}^{*}$ are arbitrary. Observe that k is the transition element from the basis $\{v\}$ of \mathcal{J}^{2} to $\left\{v^{\prime}\right\}$. This is similar to the situation of $[4,5]$, wherein $k \in \mathbb{F}_{q}^{*}$. We deduce from Theorem 3 in [5] that if $p=2$, there are up to isomorphism, four commutative rings with structural matrices

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

and from Theorem 4 in [4] that if p is odd, there are up to isomorphism, five commutative rings with structural matrices

$$
\left(\begin{array}{lll}
\alpha & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \alpha
\end{array}\right),(\alpha=1, \epsilon)
$$

where ϵ is a fixed non-square in \mathbb{F}_{q}. Note that the first matrix in the case when p is odd may be multiplied by $1 / \alpha$ to obtain the five non-isomorphic classes of rings under consideration.

We now determine the structure of the $p-$ group $1+\mathcal{J}$. Notice that

$$
1+\mathcal{J}=1+\mathbb{F}_{q} u_{1} \oplus \mathbb{F}_{q} u_{2} \oplus \mathbb{F}_{q} u_{3} \oplus \mathbb{F}_{q} v \oplus \sum_{i=1}^{\lambda} \oplus \mathbb{F}_{q} w_{i}
$$

The following result is fundamental in the study of the unit groups of the rings in this paper.

Lemma 3.1. Let R and S be rings (not necessarily rings considered in this paper). Then every ring isomorphism between R and S restricts to an isomorphism between R^{*} and S^{*}.

However, it is not always true that if $R^{*} \cong S^{*}$, then the rings R and S are isomorphic, as may be illustrated by the following: $\mathbb{Z}^{*}=\{1,-1\} \cong \mathbb{Z}_{3}^{*}$, while \mathbb{Z} (infinite) and \mathbb{Z}_{3} (finite) are non-isomorphic rings.

To simplify our notation, we shall call a ring of characteristic $p=2$, a ring of Type I if it is isomorphic to a ring with structural matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \text { or }\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ;
$$

and a ring of Type $I I$ if it is isomorphic to a ring with structural matrix

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

Proposition 3.2. If char $R=p, s=3, t=1$ and $\lambda \geq 1$, then

$$
1+\mathcal{J} \cong \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{r}\right)^{\lambda} \text { if } p \text { is odd }
$$

and when $p=2$,

$$
1+\mathcal{J} \cong \begin{cases}\mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { if } R \text { is of Type I; } \\ \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { if } R \text { is of Type II }\end{cases}
$$

Proof. Let $\varepsilon_{1}, \ldots, \varepsilon_{r} \in \mathbb{F}_{q}$ with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r} \in \mathbb{F}_{q}$ form a basis for \mathbb{F}_{q} over its prime subfield \mathbb{F}_{p}, where $q=p^{r}$ for any prime p and positive integer r.

We consider the two cases separately. So, suppose that p is odd. We first note the following results: For each $i=1, \ldots, r,\left(1+\varepsilon_{i} u_{1}\right)^{p}=1$, $\left(1+\varepsilon_{i} u_{2}\right)^{p}=1,\left(1+\varepsilon_{i} u_{3}\right)^{p}=1,\left(1+\varepsilon_{i} v\right)^{p}=1,\left(1+\varepsilon_{i} w_{j}\right)^{p}=1,(j=1, \ldots, \lambda)$, and $g^{p}=1$ for all $g \in 1+\mathcal{J}$. For integers $k_{i}, l_{i}, m_{i}, n_{i}, t_{i} \leq p$, we assert that

$$
\begin{aligned}
& \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{2}\right)^{l_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{3}\right)^{m_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} v\right)^{n_{i}}\right\} \\
& \cdot \prod_{j=1}^{\lambda} \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} w_{j}\right)^{t_{i}}\right\}=1
\end{aligned}
$$

will imply $k_{i}, l_{i}, m_{i}, n_{i}, t_{i}=p$ for all $i=1, \ldots, r$.
If we set $D_{i}=\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k}: k=1, \ldots, p\right\}, E_{i}=\left\{\left(1+\varepsilon_{i} u_{2}\right)^{l}: l=1, \ldots, p\right\}$, $F_{i}=\left\{\left(1+\varepsilon_{i} u_{3}\right)^{m}: m=1, \ldots, p\right\}, G_{i}=\left\{\left(1+\varepsilon_{i} v\right)^{n}: n=1, \ldots, p\right\}$ and $H_{i, j}=\left\{\left(1+\varepsilon_{i} w_{j}\right)^{t}: t=1, \ldots, p\right\}(j=1, \ldots, \lambda)$, for all $i=1, \ldots, r$; we see
that $D_{i}, E_{i}, F_{i}, G_{i}, H_{i, j}$ are all subgroups of the group $1+\mathcal{J}$ and these are all of order p as indicated in their definition. The argument above will show that the product of the $(4+\lambda) r$ subgroups $D_{i}, E_{i}, F_{i}, G_{i}, H_{i, j}$ is direct. So, their product will exhaust $1+\mathcal{J}$. This proves the case when p is odd.

To prove the second part, suppose $p=2$. We first observe that $(1+$ $\left.\varepsilon_{i} u_{1}\right)^{4}=1$ if the ring R is of Type I, and if the ring R is of Type II, the elements $1+\varepsilon_{i} u_{1}, 1+\varepsilon_{i} u_{2}, 1+\varepsilon_{i} u_{3}, 1+\varepsilon_{i} v$ and $1+\varepsilon_{i} w_{j}(j=1, \ldots, \lambda)$, are all of order 2 .

If the ring R is of Type I , the elements $1+\varepsilon_{i} u_{2}$, and $1+\varepsilon_{i} u_{3}$, are each of order 4 , for all $i=1, \ldots, r$, according as the structural matrix A of R is of the form $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ or $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. In particular, if $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, then $o\left(1+\varepsilon_{i} u_{2}\right)=o\left(1+\varepsilon_{i} u_{3}\right)=o\left(1+\varepsilon_{i} w_{j}\right)=2$; if $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$, then $o\left(1+\varepsilon_{i} u_{3}\right)=o\left(1+\varepsilon_{i} w_{j}\right)=2$; and if $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, then $o\left(1+\varepsilon_{i} w_{j}\right)=$ $2 ;(j=1, \ldots, \lambda)$. Observe further that in this type of rings, $\left(1+\varepsilon_{i} u_{1}\right)^{2}=$ $1+\varepsilon_{i}^{2} v$.

Now, if R is a ring of Type II, then for each $i=1, \ldots, r$ and for integers $k_{i}, l_{i}, m_{i}, n_{i}, t_{i} \leq 2$, we assert that the equation

$$
\begin{aligned}
& \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{2}\right)^{l_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{3}\right)^{m_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} v\right)^{n_{i}}\right\} \\
& \cdot \prod_{j=1}^{\lambda} \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} w_{j}\right)^{t_{i}}\right\}=1
\end{aligned}
$$

will imply $k_{i}, l_{i}, m_{i}, n_{i}, t_{i}=2$, for all $i=1, \ldots, r$.
If we set $D_{i}=\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k}: k=1,2\right\}, E_{i}=\left\{\left(1+\varepsilon_{i} u_{2}\right)^{l}: l=1,2\right\}$, $F_{i}=\left\{\left(1+\varepsilon_{i} u_{3}\right)^{m}: m=1,2\right\}, G_{i}=\left\{\left(1+\varepsilon_{i} v\right)^{n}: n=1,2\right\}$ and $H_{i, j}=$ $\left\{\left(1+\varepsilon_{i} w_{j}\right)^{t}: t=1,2\right\}(j=1, \ldots, \lambda)$, for all $i=1, \ldots, r$; we see that $D_{i}, E_{i}, F_{i}, G_{i}, H_{i, j}$ are all subgroups of the group $1+\mathcal{J}$, each of order 2. The argument above will show that the product of the $(4+\lambda) r$ subgroups $D_{i}, E_{i}, F_{i}, G_{i}, H_{i, j}$ is direct. So, their product will exhaust $1+\mathcal{J}$.

If R is a ring of Type I and $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, the equation

$$
\prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{2}\right)^{l_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{3}\right)^{m_{i}}\right\}
$$

$$
\prod_{j=1}^{\lambda} \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} w_{j}\right)^{n_{i}}\right\}=1
$$

will imply $k_{i}=4$, and $l_{i}=m_{i}=n_{i}=2$, for all $i=1, \ldots, r$, and $j=1, \ldots, \lambda$.
If we set $D_{i}=\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k}: k=1, \ldots, 4\right\}, E_{i}=\left\{\left(1+\varepsilon_{i} u_{2}\right)^{l}: l=1,2\right\}$, $F_{i}=\left\{\left(1+\varepsilon_{i} u_{3}\right)^{m}: m=1,2\right\}$, and $G_{i, j}=\left\{\left(1+\varepsilon_{i} w_{j}\right)^{t}: t=1,2\right\}$ $(j=1, \ldots, \lambda)$, for all $i=1, \ldots, r$; we see that $D_{i}, E_{i}, F_{i}, G_{i, j}$ are all subgroups of the group $1+\mathcal{J}$, and these are of the precise order as indicated in their definition. The argument above will show that the product of the $(3+\lambda) r$ subgroups $D_{i}, E_{i}, F_{i}, G_{i, j}$ is direct. So, their product will exhaust $1+\mathcal{J}$.

If R is of Type I and $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$, the equation

$$
\prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{1}+\varepsilon_{i} u_{2}+\varepsilon_{i} v+\right)^{l_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{3}\right)^{m_{i}}\right\}
$$

$$
\prod_{j=1}^{\lambda} \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} w_{j}\right)^{n_{i}}\right\}=1
$$

will imply $k_{i}=4$, and $l_{i}=m_{i}=n_{i}=2$, for all $i=1, \ldots, r$, and $j=1, \ldots, \lambda$. A similar argument with slight modifications as in the previous case leads to the result.

If R is of Type I and $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, then $1+\mathcal{J}$ contains subgroups $<1+\varepsilon_{i} u_{1}+\varepsilon_{i} u_{2}+\varepsilon_{i} v>,<1+\varepsilon_{i} u_{1}+\varepsilon_{i} u_{3}+\varepsilon_{i} v>$ each of order 2, for every $i=1, \ldots, r$, and since any intersection of the cyclic subgroups $<1+\varepsilon_{i} u_{1}>,<1+\varepsilon_{i} u_{1}+\varepsilon_{i} u_{2}+\varepsilon_{i} v>,<1+\varepsilon_{i} u_{1}+\varepsilon_{i} u_{3}+\varepsilon_{i} v>$ and $<1+\varepsilon_{i} w_{j}>(j=1, \ldots, \lambda)$, is trivial, and that the order of the group generated by the direct product of these cyclic subgroups coincides with $|1+\mathcal{J}|$, it follows that

$$
\begin{aligned}
1+\mathcal{J}= & \prod_{i=1}^{r}<1+\varepsilon_{i} u_{1}>\times \prod_{i=1}^{r}<1+\varepsilon_{i} u_{1}+\varepsilon_{i} u_{2}+\varepsilon_{i} v>\times \\
& \prod_{i=1}^{r}<1+\varepsilon_{i} u_{1}+\varepsilon_{i} u_{3}+\varepsilon_{i} v>\times \prod_{j=1}^{\lambda} \prod_{i=1}^{r}<1+\varepsilon_{i} w_{j}>
\end{aligned}
$$

a direct product. This proves the first part.
To prove the second part; since for each $i=1, \ldots, r,\left(1+\varepsilon_{i} u_{1}\right)^{2}=1$, $\left(1+\varepsilon_{i} u_{2}\right)^{2}=1,\left(1+\varepsilon_{i} u_{3}\right)^{2}=1,\left(1+\varepsilon_{i} v\right)^{2}=1,\left(1+\varepsilon_{i} w_{j}\right)^{2}=1(j=$
$1, \ldots, \lambda)$, and the order of the group generated by the product of the cyclic subgroups $<1+\varepsilon_{i} u_{1}>,<1+\varepsilon_{i} u_{2}>,<1+\varepsilon_{i} u_{3}><1+\varepsilon_{i} v>$, and $\left\langle 1+\varepsilon_{i} w_{j}\right\rangle(j=1, \ldots, \lambda)$ coincides with $|1+\mathcal{J}|$, and any intersection of these subgroups gives the identity group, it follows that

$$
\begin{aligned}
1+\mathcal{J}= & \prod_{i=1}^{r}<1+\varepsilon_{i} u_{1}>\times \prod_{i=1}^{r}<1+\varepsilon_{i} u_{2}>\times \prod_{i=1}^{r}<1+\varepsilon_{i} u_{3}>\times \\
& \prod_{i=1}^{r}<1+\varepsilon_{i} v>\times \prod_{j=1}^{\lambda} \prod_{i=1}^{r}<1+\varepsilon_{i} w_{j}>
\end{aligned}
$$

a direct product. This completes the proof.

4. A generalized result

In view of Proposition 2.3, we now state the following result which summarizes the structure of the unit group R^{*} of the ring R of the introduction, in the cases when $s=2, t=1 ; t=s(s+1) / 2$, for a fixed integer s, and for all characteristics of R; and when $s=2, t=2$ and $\operatorname{char} R=p$; determined in [2] and [3], to the general case when $\operatorname{ann}(\mathcal{J})=\mathcal{J}^{2}+W$ so that $\lambda \geq 1$. This complements our earlier solution to the problem in the case when $\operatorname{ann}(\mathcal{J})=\mathcal{J}^{2}$.

Theorem 4.1. The unit group R^{*} of a commutative completely primary finite ring R with maximal ideal \mathcal{J} such that $\mathcal{J}^{3}=(0)$ and $\mathcal{J}^{2} \neq(0)$, and with the invariants p, k, r, s, t, and $\lambda \geq 1$, is a direct product of cyclic groups as follows:
i) If $s=2, t=1, \lambda \geq 1$ and charR $=p$, then

$$
R^{*}= \begin{cases}\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { or } \\ \mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { if } p=2 \\ \mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{r}\right)^{\lambda} & \text { if } p \neq 2\end{cases}
$$

ii) If $s=2, t=1, \lambda \geq 1$ and charR $=p^{2}$, then

$$
R^{*}= \begin{cases}\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{r}\right)^{\lambda} & \text { or } \\ \mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p^{2}}^{r} \times \mathbb{Z}_{p^{2}}^{r} \times \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{r}\right)^{\lambda} & \text { if } p \neq 2\end{cases}
$$

and if $p=2$
$R^{*}= \begin{cases}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}_{2} \times\left(\mathbb{Z}_{2}\right)^{\lambda} & \text { if } r=1 \text { and } p \in \mathcal{J}-\operatorname{ann}(\mathcal{J}) ; \\ \mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { if } r>1 \text { and } p \in \mathcal{J}-\operatorname{ann}(\mathcal{J}) ; \\ \mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{4}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { or } \\ \mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { if } p \in \mathcal{J}^{2} ; \\ \mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { or } \\ \mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { if } p \in \operatorname{ann}(\mathcal{J})-\mathcal{J}^{2} ;\end{cases}$
iii) If $s=2, t=1, \lambda \geq 1$ and char $R=p^{3}$, then

$$
R^{*}= \begin{cases}\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{2}}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{r}\right)^{\lambda} & \text { or } \\ \mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p^{2}}^{r} \times \mathbb{Z}_{p^{2}}^{r} \times \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{r}\right)^{\lambda} & \text { if } p \neq 2\end{cases}
$$

and

$$
R^{*}= \begin{cases}\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { or } \\ \mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { or } \\ \mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { if } p=2\end{cases}
$$

iv) If $s=2, t=2, \lambda \geq 1$ and charR $=p$, then

$$
R^{*}= \begin{cases}\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{r}\right)^{\lambda} & \text { if } p \neq 2 \\ \mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{4}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { or } \\ \mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { if } p=2\end{cases}
$$

v) If $t=s(s+1) / 2, \lambda \geq 1$, and
(a) $\operatorname{char} R=p$, then

$$
R^{*}= \begin{cases}\mathbb{Z}_{2^{r}-1} \times\left(\mathbb{Z}_{4}^{r}\right)^{s} \times\left(\mathbb{Z}_{2}^{r}\right)^{\gamma} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { if } p=2 \\ \mathbb{Z}_{p^{r}-1} \times\left(\mathbb{Z}_{p}^{r}\right)^{s} \times\left(\mathbb{Z}_{p}^{r}\right)^{s} \times\left(\mathbb{Z}_{p}^{r}\right)^{\gamma} \times\left(\mathbb{Z}_{p}^{r}\right)^{\lambda} & \text { if } p \neq 2\end{cases}
$$

(b) char $R=p^{2}$, then

$$
R^{*}= \begin{cases}\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{s} \times\left(\mathbb{Z}_{2}^{r}\right)^{s} \times\left(\mathbb{Z}_{2}^{r}\right)^{\gamma} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { if } p=2 \\ \mathbb{Z}_{p^{r}-1} \times\left(\mathbb{Z}_{p}^{r}\right) \times\left(\mathbb{Z}_{p}^{r}\right)^{s} \times\left(\mathbb{Z}_{p^{2}}^{r}\right)^{s} \times\left(\mathbb{Z}_{p}^{r}\right)^{\gamma} \times\left(\mathbb{Z}_{p}^{r}\right)^{\lambda} & \text { if } p \neq 2\end{cases}
$$

(c) $\operatorname{char} R=p^{3}$, then
$R^{*}= \begin{cases}\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4}^{r-1} \times\left(\mathbb{Z}_{2}^{r}\right)^{s} \times\left(\mathbb{Z}_{4}^{r}\right)^{s} \times\left(\mathbb{Z}_{2}^{r}\right)^{\gamma} \times\left(\mathbb{Z}_{2}^{r}\right)^{\lambda} & \text { if } p=2 \\ \mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{2}}^{r} \times\left(\mathbb{Z}_{p}^{r}\right)^{s} \times\left(\mathbb{Z}_{p^{2}}^{r}\right)^{s} \times\left(\mathbb{Z}_{p}^{r}\right)^{\gamma} \times\left(\mathbb{Z}_{p}^{r}\right)^{\lambda} & \text { if } p \neq 2 ;\end{cases}$
where $\gamma=\left(s^{2}-s\right) / 2$.
Proof. Follows from Section 3.1 in [2], Propositions 2.2, 2.3, 2.4 and 2.5 in [3], Theorem 4.1 in [2] and Proposition 2.3.

References

[1] C. J. Chikunji, On a class of finite rings, Comm. Algebra, 27(10) (1999), 5049-5081.
[2] C. J. Chikunji, Unit groups of cube radical zero commutative completely primary finite rings, Inter. J. Maths. \& Math. Sciences, 2005:4 (2005), 579-592.
[3] C. J. Chikunji, Unit groups of a certain class of completely primary finite rings, Math. J. Okayama univ., 47 (2005), 39-53.
[4] B. Corbas and G. D. Williams, Congruence classes in $M_{3}(q)$ (q odd), Discrete Mathematics, 219 (2000), 37-47.
[5] B. Corbas and G. D. Williams, Congruence classes in $M_{3}(q)$ (q even), Discrete Mathematics, 257 (2002), 15-27.

Chiteng'a John Chikunji
Department of Basics Sciences
Botswana College of Agriculture
Private Bag 0027
Gaborone, Botswana
e-mail address: jchikunj@bca.bw
(Received February 01, 2007)

[^0]: Mathematics Subject Classification. Primary 13M05, 16P10, 16U60; Secondary 20K01, 20K25.

 Key words and phrases. unit groups, completely primary finite rings, galois rings.

