UNIT GROUPS OF CUBE RADICAL ZERO COMMUTATIVE COMPLETELY PRIMARY FINITE RINGS

CHITENG'A JOHN CHIKUNJI

Received 1 July 2004

A completely primary finite ring is a ring R with identity $1 \neq 0$ whose subset of all its zero divisors forms the unique maximal ideal J. Let R be a commutative completely primary finite ring with the unique maximal ideal J such that $J^{3}=(0)$ and $J^{2} \neq(0)$. Then $R / J \cong$ $G F\left(p^{r}\right)$ and the characteristic of R is p^{k}, where $1 \leq k \leq 3$, for some prime p and positive integer r. Let $R_{o}=G R\left(p^{k r}, p^{k}\right)$ be a Galois subring of R and let the annihilator of J be J^{2} so that $R=R_{o} \oplus U \oplus V$, where U and V are finitely generated R_{o}-modules. Let nonnegative integers s and t be numbers of elements in the generating sets for U and V, respectively. When $s=2, t=1$, and the characteristic of R is p; and when $t=s(s+1) / 2$, for any fixed s, the structure of the group of units R^{*} of the ring R and its generators are determined; these depend on the structural matrices $\left(a_{i j}\right)$ and on the parameters p, k, r, and s.

Notations

Throughout this paper, R will denote a finite ring, unless otherwise stated, J will denote the Jacobson radical of R, and we will denote the Galois ring $G R\left(p^{n r}, p^{n}\right)$ of characteristic p^{n} and order $p^{n r}$ by R_{o}, for some prime p, and positive integers n, r.

We denote the group of units of R by R^{*} and a cyclic group of order π by $\epsilon(\pi)$. If g is an element of R^{*}, then $o(g)$ denotes its order, and $\langle g\rangle$ denotes the cyclic group generated by g. Furthermore, for a subset A of R or $R^{*},|A|$ will denote the number of elements in A. The ring of integers modulo the number n will be denoted by \mathbb{Z}_{n}, and the characteristic of R will be denoted by char R.

1. Introduction

In [6], Fuchs asked for a characterization of abelian groups which could be groups of units of a ring. This question was noted to be too general for a complete answer [12], and a natural course is to restrict the classes of groups or rings to be considered.

Let R be a ring and let R^{*} denote its multiplicative group of unit elements. All local rings R with R^{*} cyclic were determined by Gilmer [8] and this case was also considered by Ayoub [1] (also proofs are given in [10, 11]). Pearson and Schneider have found all
R where R^{*} is generated by two elements. Clark [4] has investigated R^{*} where the ideals form a chain and has shown that if $p \geq 3, n \geq 2$, and $r \geq 2$, then the units of the Galois ring $G R\left(p^{n r}, p^{n}\right)$ are a direct sum of a cyclic group of order $p^{r}-1$ and r cyclic groups of order $p^{n}-1$ (this was also done independently by Raghavendran [11]). In fact, Raghavendran described the structure of the multiplicative group of every Galois ring. Stewart in [12] considered a related problem to that asked by Fuchs [6] by proving that for a given finite group G (not necessarily abelian), there are, up to isomorphism, only finitely many directly indecomposable finite rings having group of units isomorphic to G.

Ganske and McDonald [7] provided a solution for R^{*} when the local ring R has Jacobson radical J such that $J^{2}=(0)$ by showing that

$$
\begin{equation*}
R^{*}=\left(\oplus \sum_{i=1}^{n t} \epsilon(p)\right) \oplus \epsilon(|K|-1) \tag{1.1}
\end{equation*}
$$

where $n=\operatorname{dim}_{K}\left(J / J^{2}\right),|K|=p^{t}$, and $\epsilon(\pi)$ denotes the cyclic group of order π.
In [5], Dolzan found all nonisomorphic rings with a group of units isomorphic to a group G with n elements, where n is a power of a prime or any product of prime powers, not divisible by 4 ; and also found all groups with n elements which can be groups of units of a finite ring, a contribution to Stewart's problem [12]. More recently, X.-D. Hou et al. gave an algorithmic method for computing the structure of the group of units of a finite commutative chain ring and further strengthening the known result by listing a set of linearly independent generators for the group of units.

The present paper focuses on the group of units R^{*} of a commutative completely primary finite ring R with unique maximal ideal J such that $R / J \cong G F\left(p^{r}\right), J^{3}=(0)$, and $J^{2} \neq(0)$ so that the characteristic of R is p^{k}, where $1 \leq k \leq 3$; and further identifies sets of generators for R^{*}.

In particular, let $R_{o}=G R\left(p^{k r}, p^{k}\right)$ be a Galois subring of R and let the annihilator of J be J^{2} so that $R=R_{o} \oplus U \oplus V$, where U and V are finitely generated R_{o}-modules. Let nonnegative integers s and t be numbers of elements in the generating sets for U and V, respectively. When $s=2, t=1$, and $\operatorname{char} R=p$, and when $t=s(s+1) / 2$, for any fixed s, the structure of the group of units R^{*} of the ring R and its generators have been determined; these depend on the structural matrices $\left(a_{i j}\right)$ and on the parameters p, k, r, and s.

2. Preliminaries

We refer the reader to [2] for the general background of completely primary finite rings R with maximal ideals J such that $J^{3}=\{0\}$ and $J^{2} \neq\{0\}$. Let R be a completely primary finite ring with maximal ideal J such that $J^{3}=(0)$ and $J^{2} \neq(0)$. Then R is of order $p^{n r}$ and the residue field R / J is a finite field $G F\left(p^{r}\right)$, for some prime p and positive integers n, r. The characteristic of R is p^{k}, where k is an integer such that $1 \leq k \leq 3$. Let $G R\left(p^{k r}, p^{k}\right)$ be the Galois ring of characteristic p^{k} and order $p^{k r}$, that is, $G R\left(p^{k r}, p^{k}\right)=\mathbb{Z}_{p^{k}}[x] /(f)$, where $f \in \mathbb{Z}_{p^{k}}[x]$ is a monic polynomial of degree r whose image in $\mathbb{Z}_{p}[x]$ is irreducible. Then, it can be deduced from the main theorem in [4] that R has a coefficient subring R_{o} of the form $G R\left(p^{k r}, p^{k}\right)$ which is clearly a maximal Galois subring of R. Moreover, there
exist elements $m_{1}, m_{2}, \ldots, m_{h} \in J$ and automorphisms $\sigma_{1}, \ldots, \sigma_{h} \in \operatorname{Aut}\left(R_{o}\right)$ such that

$$
\begin{equation*}
R=R_{o} \oplus \sum_{i=1}^{h} R_{o} m_{i} \tag{2.1}
\end{equation*}
$$

(as R_{o}-modules), $m_{i} r=r^{\sigma_{i}} m_{i}$, for every $r \in R_{o}$ and any $i=1, \ldots, h$. Further, $\sigma_{1}, \ldots, \sigma_{h}$ are uniquely determined by R and R_{o}. The maximal ideal of R is

$$
\begin{equation*}
J=p R_{o} \oplus \sum_{i=1}^{h} R_{o} m_{i} . \tag{2.2}
\end{equation*}
$$

It is worth noting that R contains an element b of multiplicative order $p^{r}-1$ and that $R_{o}=\mathbb{Z}_{p^{k}}[b]$ (see, e.g., [2, Result 1.3]).

The following results will be useful.
Proposition 2.1. Let R be a completely primary finite ring (not necessarily commutative). Then the group of units R^{*} of R contains a cyclic subgroup $\langle b\rangle$ of order $p^{r}-1$, and R^{*} is a semidirect product of $1+J$ and $\langle b\rangle$.

Proof. Obviously, the group of units R^{*} of R is $R-J,\left|R^{*}\right|=p^{(n-1) r}\left(p^{r}-1\right)$, and ϕ : $R \rightarrow R / J$ induces a surjective multiplicative group homomorphism $\varphi: R^{*} \rightarrow(R / J)^{*}$. Since $\operatorname{ker} \phi=J$, we have $\operatorname{ker} \varphi=1+J$. In particular, $1+J$ is a normal subgroup of R^{*}.

Let $\langle\beta\rangle=(R / J)^{*}$, and let $b_{o} \in \varphi^{-1}(\beta)$. Then, the multiplicative order of b_{o} is a multiple of $p^{r}-1$ and a divisor of $|R-J|=p^{n r}-p^{(n-1) r}=p^{(n-1) r}\left(p^{r}-1\right)$; hence, of the form $p^{s}\left(p^{r}-1\right)$. But then $b=b_{o}^{p^{s}}$ has multiplicative order $p^{r}-1$ and $\varphi\left(b_{o}^{p^{s}}\right)=\beta^{p^{s}}$, which is still a generator of $(R / J)^{*}$, since $\left(p^{s}, p^{r}-1\right)=1$.

Finally, since $\left|R^{*}\right|=|1+J| \cdot|\langle b\rangle|$, and $(1+J) \cap\langle b\rangle=1$, we have $R^{*}=(1+J) \cdot\langle b\rangle$, hence, $R^{*}=(1+J) \times_{\theta}\langle b\rangle$, a semidirect product.
Proposition 2.2. Let R be a completely primary finite ring (not necessarily commutative). Then the group of units R^{*} is solvable.

Proof. That R^{*} is a solvable group follows from the fact that $1+J$ is a normal p-subgroup of R^{*}, and $R^{*} /(1+J)$ is cyclic.
Lemma 2.3. Let R be a completely primary finite ring (not necessarily commutative). If G is a subgroup of R^{*} of order $p^{r}-1$, then G is conjugate to $\langle b\rangle$ in R^{*}.

Proof. This follows from key properties of p-solvable groups contained in the variation of Sylow's theorem, due to Philip Hall, since the order of G is prime to its index in R^{*} (see, e.g., [9, Theorem 8.2 page 25]).

Proposition 2.4. Let R be a completely primary finite ring (not necessarily commutative). If R^{*} contains a normal subgroup of order $p^{r}-1$, then the set $K_{o}=\langle b\rangle \cup\{0\}$ is contained in the center of the ring R.

Proof. By Lemma 2.3, $\langle b\rangle$ is normal in R^{*} and since $1+J$ is a normal subgroup of R^{*} with $|\langle b\rangle \cap(1+J)|=1$, it follows that $\langle b\rangle$ and $1+J$ commute elementwise. Hence, b lies in the center of R.

Proposition 2.5. Let R be a completely primary finite ring. Then, $\left(1+J^{i}\right) /\left(1+J^{i+1}\right) \cong$ J^{i} / J^{i+1} (the left-hand side as a multiplicative group and the right-hand side as an additive group).

Proof. Consider the map

$$
\begin{equation*}
\eta:\left(1+J^{i}\right) /\left(1+J^{i+1}\right) \longrightarrow J^{i} / J^{i+1} \tag{2.3}
\end{equation*}
$$

defined by

$$
\begin{equation*}
(1+x)\left(1+J^{i+1}\right) \longrightarrow x+J^{i+1} \tag{2.4}
\end{equation*}
$$

Then it is easy to see that η is an isomorphism.
Remark 2.6 (see [3, Result 2.7]). Let R be a completely primary finite ring of characteristic p^{k} and with Jacobson radical J. Let R_{o} be a Galois subring of R. If $m \in J$ and p^{t} is the additive order of m, for some positive integer t, then $\left|R_{o} m\right|=p^{t r}$.
Proof. Apply the fact that

$$
\begin{equation*}
R_{o} m \cong R_{o} / p^{t} R_{o} \tag{2.5}
\end{equation*}
$$

Now let R be a commutative completely primary finite ring with maximal ideal J such that $J^{3}=(0)$ and $J^{2} \neq(0)$. In [2], the author gave constructions describing these rings for each characteristic and for details, we refer the reader to [2, Sections 4 and 6].

If R is a commutative completely primary finite ring with maximal ideal J such that $J^{3}=(0)$ and $J^{2} \neq(0)$, then from Constructions A and B [2],

$$
\begin{align*}
& R=R_{o} \oplus U \oplus V \oplus W \tag{2.6}\\
& J=p R_{o} \oplus U \oplus V \oplus W \tag{2.7}
\end{align*}
$$

where the R_{o}-modules U, V, and W are finitely generated. The structure of R is characterized by the invariants p, n, r, d, s, t, and λ; and the linearly independent matrices $\left(a_{i j}^{k}\right)$ defined in the multiplication. Let ann (J) denote the two-sided annihilator of J in R. Notice that since $J^{2} \subseteq \operatorname{ann}(J)$, we can write $R=R_{o} \oplus U \oplus M$, and hence, $J=p R_{o} \oplus U \oplus M$, where $M=V \oplus W$, and the multiplication in R may be written accordingly. It is therefore easy to see that the description of rings of this type reduces to the case where ann (J) coincides with J^{2}. Therefore, when investigating the structure of the group of units of this type of rings for a given order, say $p^{n r}$, where ann (J) does not coincide with J^{2}, we will first write all the rings of this type of order $\leq p^{n r}$, where ann (J) coincides with J^{2}.

In what follows, we assume that ann $(J)=J^{2}$.
Let $R_{o}=G R\left(p^{k r}, p^{k}\right)(1 \leq k \leq 3)$ and let nonnegative integers s and t be numbers of elements in the generating sets $\left\{u_{1}, \ldots, u_{s}\right\}$ and $\left\{v_{1}, \ldots, v_{t}\right\}$ for finitely generated R_{o}-modules U and V, respectively, where $t \leq s(s+1) / 2$. Assume that $u_{1}, u_{2}, \ldots, u_{s}$ and v_{1}, \ldots, v_{t} are commuting indeterminates. Then $R=R_{o} \oplus U \oplus V$.

By Proposition 2.1, and since R is commutative,

$$
\begin{equation*}
R^{*}=\langle b\rangle \cdot(1+J) \cong\langle b\rangle \times(1+J) \tag{2.8}
\end{equation*}
$$

a direct product.

Again, notice that since R is of order $p^{n r}$ and $R^{*}=R-J$, it is easy to see that $\left|R^{*}\right|=$ $p^{(n-1) r}\left(p^{r}-1\right)$ and $|1+J|=p^{(n-1) r}$, so that $1+J$ is an abelian p-group. Thus, $R^{*} \cong$ (abelian p-group) $\times($ cyclic group of order $|R / J|-1)$.

Our goal is to determine the structure and identify a set of generators of the multiplicative abelian p-group $1+J$.

3. The group $1+J$

Now let R be a commutative completely primary finite ring with maximal ideal J such that $J^{3}=(0)$ and $J^{2} \neq(0)$. Let $1+J$ be the abelian p-subgroup of the unit group R^{*}.

The group $1+J$ has a filtration $1+J \supset 1+J^{2} \supset 1+J^{3}=\{1\}$ with filtration quotients $(1+J) /\left(1+J^{2}\right)$ and $\left(1+J^{2}\right) /\{1\}=1+J^{2}$ isomorphic to the additive groups J / J^{2} and J^{2}, respectively.
Remark 3.1. Notice that $1+J^{2}$ is a normal subgroup of $1+J$. But, in general, $1+J$ does not have a subgroup which is isomorphic to the quotient $(1+J) /\left(1+J^{2}\right)$ as may be illustrated by the following example.

Example 3.2. Let $R=\mathbb{Z}_{p^{3}}$, where p is an odd prime. Then $J=p \mathbb{Z}_{p^{3}}, \operatorname{ann}(J)=J^{2}$, and $1+J \cong \mathbb{Z}_{p^{2}}, 1+J^{2} \cong \mathbb{Z}_{p},(1+J) /\left(1+J^{2}\right) \cong \mathbb{Z}_{p}$.
Remark 3.3. In view of the above remark and example, we investigate the structure of $1+J$ by considering various subgroups of $1+J$.
3.1. The case when $s=2, t=1$, and $\operatorname{char} R=p$. Suppose $s=2, t=1$, and char $R=p$. Let $R_{o}=\mathbb{F}_{q}=G F\left(p^{r}\right)$, the Galois field of $q=p^{r}$ elements. Then

$$
\begin{equation*}
R=\mathbb{F}_{q} \oplus \mathbb{F}_{q} u_{1} \oplus \mathbb{F}_{q} u_{2} \oplus \mathbb{F}_{q} v, \tag{3.1}
\end{equation*}
$$

the Jacobson radical

$$
\begin{gather*}
J=\mathbb{F}_{q} u_{1} \oplus \mathbb{F}_{q} u_{2} \oplus \mathbb{F}_{q} v, \tag{3.2}\\
J^{2}=\mathbb{F}_{q} v . \tag{3.3}
\end{gather*}
$$

The multiplication in R is given by

$$
\begin{equation*}
u_{1}^{2}=a_{11} v, \quad u_{1} u_{2}=u_{2} u_{1}=a_{12} v, \quad u_{2}^{2}=a_{22} v, \tag{3.4}
\end{equation*}
$$

where $a_{i j} \in \mathbb{F}_{q}$. The elements $a_{i j}$ form a nonzero symmetric matrix

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \tag{3.5}\\
a_{21} & a_{22}
\end{array}\right)
$$

since $J^{2} \neq(0)$.
Since R^{*} is a direct product of the cyclic group $\langle b\rangle$ of order $p^{r}-1$ and the group $1+J$ of order $p^{3 r}$, it suffices to determine the structure of $1+J$.

In this case,

$$
\begin{equation*}
1+J=1+\mathbb{F}_{q} u_{1} \oplus \mathbb{F}_{q} u_{2} \oplus \mathbb{F}_{q} v, \tag{3.6}
\end{equation*}
$$

and since s and t are fixed, the structure of $1+J$ now depends on the prime p, the integer r, and the structural matrix $\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$. We investigate this by considering cases depending on the type of the structural matrix.

Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r}$ be elements of \mathbb{F}_{q} with $\varepsilon_{1}=1$ so that $\overline{\varepsilon_{1}}, \overline{\varepsilon_{2}}, \ldots, \overline{\varepsilon_{r}}$ form a basis for \mathbb{F}_{q} regarded as a vector space over its prime subfield \mathbb{F}_{p}.
Case (i). Suppose that $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$, with $a \neq 0$. Then

$$
1+J \cong \begin{cases}\mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r}, & \text { if } \operatorname{char} R=2 \tag{3.7}\\ \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r}, & \text { if char } R=p \neq 2\end{cases}
$$

To see this, we consider the two cases separetely. So, suppose that $p=2$. We first note the following results:

$$
\begin{equation*}
1+\varepsilon_{i} u_{1} \in 1+J, \quad\left(1+\varepsilon_{i} u_{1}\right)^{4}=1, \quad\left(1+\varepsilon_{i} u_{2}\right)^{2}=1, \quad g^{4}=1, \quad \forall g \in 1+J \tag{3.8}
\end{equation*}
$$

For positive integers k_{i}, l_{l}, with $k_{i} \leq 4, l_{i} \leq 2$, we assert that

$$
\begin{equation*}
\prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{2}\right)^{l_{i}}\right\}=1 \tag{3.9}
\end{equation*}
$$

will imply $k_{i}=4$ for all $i=1, \ldots, r$; and $l_{i}=2$ for all $i=1, \ldots, r$.
If we set $F_{i}=\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k} \mid k=1, \ldots, 4\right\}$ for all $i=1, \ldots, r$; and $G_{i}=\left\{\left(1+\varepsilon_{i} u_{2}\right)^{l} \mid l=1,2\right\}$ for all $i=1, \ldots, r$, we see that F_{i}, G_{i} are all cyclic subgroups of the group $1+J$ and that these are of the precise orders indicated by their definition. The argument above will show that the product of $2 r$ subgroups F_{i} and G_{i} is direct. So, their product will exhaust the group $1+J$.

When p is an odd prime, we have to consider the equation

$$
\begin{equation*}
\prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{2}\right)^{l_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} v\right)^{m_{i}}\right\}=1 \tag{3.10}
\end{equation*}
$$

and as each element in $1+J$ raised to the power p equals 1 , we see that $1+J$ will be an elementary abelian group.

Case (ii). Suppose that $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\left(\begin{array}{ll}0 & a \\ a & 0\end{array}\right)$, with $a \neq 0$. Then

$$
\begin{equation*}
1+J \cong \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \tag{3.11}
\end{equation*}
$$

for every $p=$ char R. In this case, we consider the equation

$$
\begin{equation*}
\prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{2}\right)^{l_{i}}\right\} \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} v\right)^{m_{i}}\right\}=1 \tag{3.12}
\end{equation*}
$$

and the integers k_{i}, l_{i}, m_{i} will imply $k_{i}=l_{i}=m_{i}=p$ for all $i=1, \ldots, r$.
If we set $F_{i}=\left\{\left(1+\varepsilon_{i} u_{1}\right)^{k} \mid k=1, \ldots, p\right\}$ for all $i=1, \ldots, r ; G_{i}=\left\{\left(1+\varepsilon_{i} u_{2}\right)^{l} \mid l=1, \ldots, p\right\}$ for all $i=1, \ldots, r$; and $H_{i}=\left\{\left(1+\varepsilon_{i} v\right)^{m} \mid m=1, \ldots, p\right\}$ for all $i=1, \ldots, r$, we see that F_{i}, G_{i}, and H_{i} are all cyclic subgroups of the group $1+J$ and that these are all of order p. The product of the $3 r$ subgroups F_{i}, G_{i}, and H_{i} is direct. So, their product will exhaust the group $1+J$.
Case (iii). Suppose now that $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\left(\begin{array}{ll}a & b \\ b & 0\end{array}\right)$, with a and b being nonzero. Then

$$
1+J \cong \begin{cases}\mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r}, & \text { if char } R=2 \tag{3.13}\\ \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r}, & \text { if char } R=p \neq 2\end{cases}
$$

The argument is similar to that in Case (i).
Case (iv). Suppose $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, with a and b being nonzero. Then $u_{1}^{2}=a v, u_{2}^{2}=b v$, and $u_{1} u_{2}=u_{2} u_{1}=0$.

If char $R=p \neq 2$, then $o\left(1+\varepsilon_{i} u_{1}\right)=o\left(1+\varepsilon_{i} u_{2}\right)=p(i=1, \ldots, r)$. Moreover, for every $i=1, \ldots, r,\left\langle 1+\varepsilon_{i} u_{1}\right\rangle \cap\left\langle 1+\varepsilon_{i} u_{2}\right\rangle=\{1\}$. Also, $o\left(1+\varepsilon_{i} v\right)=p$, and the element $1+\varepsilon_{i} v(i=$ $1, \ldots, r)$ generates a cyclic subgroup of order p.

If char $R=2$, then in $1+J$, we see that $o\left(1+\varepsilon_{i} u_{1}\right)=4$ and for each ε_{i}, by considering the element $1+\varepsilon_{i} u_{1}+\varepsilon_{i} u_{2}+\varepsilon_{i} v$ of order 2 , one obtains the direct product

$$
\begin{equation*}
1+J=\prod_{i=1}^{r}\left\langle 1+\varepsilon_{i} u_{1}\right\rangle \times \prod_{i=1}^{r}\left\langle 1+\varepsilon_{i} u_{1}+\varepsilon_{i} u_{2}+\varepsilon_{i} v\right\rangle . \tag{3.14}
\end{equation*}
$$

Hence,

$$
1+J \cong \begin{cases}\mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r}, & \text { if } \operatorname{char} R=2 \tag{3.15}\\ \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r}, & \text { if } \operatorname{char} R=p \neq 2\end{cases}
$$

Case (v). Finally, suppose that $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$, with a, b, and c being nonzero. Then $u_{1}^{2}=a v, u_{2}^{2}=c v$, and $u_{1} u_{2}=u_{2} u_{1}=b v$. In this case, it is easy to verify that

$$
1+J \cong \begin{cases}\mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r}, & \text { if } \operatorname{char} R=2 \tag{3.16}\\ \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r}, & \text { if char } R=p \neq 2\end{cases}
$$

The number of cases involved in determining the structure of $1+J$ for larger values of s and for $t<s(s+1) / 2$ compels us to investigate the problem by considering the extreme case when the invariant $t=s(s+1) / 2$, and to leave the other cases for subsequent work.
3.2. The case when $t=s(s+1) / 2$, for s fixed. Suppose that $t=s(s+1) / 2$ for a fixed nonnegative integer s. Let $u_{1}, u_{2}, \ldots, u_{s}$ be commuting indeterminates over the Galois ring $R_{o}=G R\left(p^{k r}, p^{k}\right)$, where $1 \leq k \leq 3$. Then it is easy to verify that

$$
\begin{equation*}
R=R_{o} \oplus \sum_{i=1}^{s} R_{o} u_{i} \oplus \sum_{i, j=1}^{s} R_{o} u_{i} u_{j} \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{i} u_{j}=u_{j} u_{i}, \quad u_{i}^{3}=u_{i}^{2} u_{j}=u_{i} u_{j}^{2}=0, \quad \text { for every } i, j=1, \ldots, s, \tag{3.18}
\end{equation*}
$$

is a commutative completely primary finite ring with Jacobson radical

$$
\begin{gather*}
J=p R_{o} \oplus \sum_{i=1}^{s} R_{o} u_{i} \oplus \sum_{i, j=1}^{s} R_{o} u_{i} u_{j} ; \tag{3.19}\\
J^{2}=p R_{o} \oplus \sum_{i, j=1}^{s} R_{o} u_{i} u_{j} \quad \text { or } \quad J^{2}=p^{2} R_{o} \oplus \sum_{i, j=1}^{s} R_{o} u_{i} u_{j} ; \quad J^{3}=(0) . \tag{3.20}
\end{gather*}
$$

In this case, the linearly independent matrices $\left(a_{i j}^{k}\right)$ defined in the multiplication of R are the $t=s(s+1) / 2, s \times s$ symmetric matrices with 1's in the (i, j) th and (j, i) th positions, and zeros elsewhere.

It follows clearly that

$$
\begin{equation*}
1+J=1+p R_{o} \oplus \sum_{i=1}^{s} R_{o} u_{i} \oplus \sum_{i, j=1}^{s} R_{o} u_{i} u_{j} \tag{3.21}
\end{equation*}
$$

and it can easily be deduced that every element x of $1+J$ has a unique expression of the form

$$
\begin{equation*}
x=1+p a_{o}+\sum_{i=1}^{s} a_{i} u_{i}+\sum_{i, j=1}^{s} a_{i j} u_{i} u_{j}, \tag{3.22}
\end{equation*}
$$

where $a_{o}, a_{i}, a_{i j}=a_{j i}$ are in $K=R_{o} / p R_{0}$.
Let s be a fixed nonnegative integer and suppose that $t=s(s+1) / 2$. If $\operatorname{char} R=p$, then

$$
\begin{equation*}
|R|=p^{\left(\left(s^{2}+3 s+2\right) / 2\right) r}, \quad|J|=p^{\left(\left(s^{2}+3 s\right) / 2\right) r} \tag{3.23}
\end{equation*}
$$

because $\left|R_{o} u_{i}\right|=p^{r}($ for each $i=1, \ldots, s)$ and $\left|R_{o} u_{i} u_{j}\right|=p^{r}($ for $i, j=1, \ldots, s)$; thus

$$
\begin{equation*}
|1+J|=p^{\left(\left(s^{2}+3 s\right) / 2\right) r} . \tag{3.24}
\end{equation*}
$$

If char $R=p^{2}$, then

$$
\begin{equation*}
|R|=p^{\left(\left(s^{2}+5 s+4\right) / 2\right) r}, \quad|J|=p^{\left(\left(s^{2}+5 s+2\right) / 2\right) r} \tag{3.25}
\end{equation*}
$$

because $\left|R_{o}\right|=p^{2 r},\left|p R_{o}\right|=p^{r},\left|R_{o} u_{i}\right|=p^{2 r}$, if $p u_{i} \neq 0$ (for each $i=1, \ldots, s$) and $\left|R_{o} u_{i} u_{j}\right|$ $=p^{r}($ for $i, j=1, \ldots, s)$ (see Remark 2.6), and thus

$$
\begin{equation*}
|1+J|=p^{\left(\left(s^{2}+5 s+2\right) / 2\right) r} \tag{3.26}
\end{equation*}
$$

Finally, if $\operatorname{char} R=p^{3}$, then

$$
\begin{equation*}
|R|=p^{\left(\left(s^{2}+5 s+6\right) / 2\right) r}, \quad|J|=p^{\left(\left(s^{2}+5 s+4\right) / 2\right) r} \tag{3.27}
\end{equation*}
$$

because $\left|R_{o}\right|=p^{3 r},\left|p R_{o}\right|=p^{2 r}$ and if $p u_{i} \neq 0,\left|R_{o} u_{i}\right|=p^{2 r}$ (because $p^{2} u_{i}=0$) (for each $i=1, \ldots, s)$ and $\left|R_{o} u_{i} u_{j}\right|=p^{r}($ for $i, j=1, \ldots, s)$ (see Remark 2.6 and also because $p u_{i} u_{j}=0$), and hence,

$$
\begin{equation*}
|1+J|=p^{\left(\left(s^{2}+5 s+4\right) / 2\right) r} \tag{3.28}
\end{equation*}
$$

Proposition 3.4. If char $R=p^{k}$, where $k=2$ or 3 , then $1+J$ contains $1+p R_{o}$ as its subgroup.
Proof. We only show the case for char $R=p^{2}$, the other case follows easily from this. Now, each element of $1+p R_{o}$ is of the form $1+p r$, for every $r \in R_{o}$, and for any two elements $1+p r_{1}$ and $1+p r_{2}$, we have

$$
\begin{equation*}
\left(1+p r_{1}\right)\left(1+p r_{2}\right)=1+p\left(r_{1}+r_{2}\right) \tag{3.29}
\end{equation*}
$$

which is clearly an element of $1+p R_{0}$.
Proposition 3.5. For each pair u_{i}, u_{j} with $i \neq j$ and $u_{i} u_{j}=u_{j} u_{i}, 1+R_{o} u_{i} u_{j}$ is a subgroup of $1+J$.

Proof. It is easy to see that $1+R_{o} u_{i} u_{j}$ is a subgroup of $1+J$ because for any two elements $1+r_{1} u_{i} u_{j}$ and $1+r_{2} u_{i} u_{j}$ in $1+R_{o} u_{i} u_{j}$, we have

$$
\begin{equation*}
\left(1+r_{1} u_{i} u_{j}\right)\left(1+r_{2} u_{i} u_{j}\right)=1+\left(r_{1}+r_{2}\right) u_{i} u_{j} \in 1+R_{o} u_{i} u_{j} \tag{3.30}
\end{equation*}
$$

since $\left(u_{i} u_{j}\right)^{2}=0$.
Proposition 3.6. For every $i=1, \ldots, s, 1+R_{o} u_{i}+R_{o} u_{i}^{2}$ is a subgroup of $1+J$.
Proof. Obviously,

$$
\begin{equation*}
\left(1+r_{1} u_{i}+r_{2} u_{i}^{2}\right)\left(1+s_{2} u_{i}+s_{2} u_{i}^{2}\right)=1+\left(r_{1}+s_{1}\right) u_{i}+\left(r_{1} s_{1}+r_{2}+s_{2}\right) u_{i}^{2} \tag{3.31}
\end{equation*}
$$

lies in $1+R_{o} u_{i}+R_{o} u_{i}^{2}$, for any pair $1+r_{1} u_{i}+r_{2} u_{i}^{2}$ and $1+s_{2} u_{i}+s_{2} u_{i}^{2}$ of elements in $1+$ $R_{o} u_{i}+R_{o} u_{i}^{2}$.

In view of Remark 2.6 and Propositions 3.4, 3.5, and 3.6, we may now state the following.

Proposition 3.7. Let $1+p R_{o}, 1+R_{o} u_{i}+R_{o} u_{i}^{2}$, and $1+R_{o} u_{i} u_{j}$ be the subgroups of $1+J$ defined above. Then

$$
\begin{align*}
\left|1+p R_{o}\right| & = \begin{cases}p^{r}, & \text { if } \operatorname{char} R=p^{2}, \\
p^{2 r}, & \text { if } \operatorname{char} R=p^{3},\end{cases} \tag{3.32}\\
\left|1+R_{o} u_{i}+R_{o} u_{i}^{2}\right| & = \begin{cases}p^{2 r}, & \text { if } \operatorname{char} R=p, \\
p^{3 r}, & \text { if } \operatorname{char} R=p^{2}, \\
p^{3 r}, & \text { if } \operatorname{char} R=p^{3},\end{cases} \tag{3.33}\\
\left|1+R_{o} u_{i} u_{j}\right| & =p^{r}, \tag{3.34}
\end{align*}
$$

for every characteristic of R.
Proposition 3.8. The group $1+J$ is a direct product of the subgroup $1+p R_{o}$, s subgroups $1+R_{o} u_{i}+R_{o} u_{i}^{2}$, and $s(s-1) / 2$ subgroups $1+R_{o} u_{i} u_{j}$, where $i \neq j$ and $u_{i} u_{j}=u_{j} u_{i}$.

Proof. This follows from the fact that $1+p R_{o}, 1+R_{o} u_{i}+R_{o} u_{i}^{2}$, and $1+R_{o} u_{i} u_{j}$ are subgroups of $1+J$, intersection of any pair of these subgroups is trivial (for every $i, j=$ $1, \ldots, s)$, and by Proposition 3.7,

$$
\begin{equation*}
|1+J|=\left|1+p R_{o}\right| \times \prod_{i=1}^{s}\left|1+R_{o} u_{i}+R_{o} u_{i}^{2}\right| \times \prod_{i \neq j=1}^{s}\left|1+R_{o} u_{i} u_{j}\right| . \tag{3.35}
\end{equation*}
$$

3.2.1. The structure of $1+p R_{0}$. The structure of $1+p R_{o}$ is completely determined by Raghavendran in [11]. For convenience of the reader, we state here the results useful for our purpose. For detailed proofs, refer to [11, Theorem 9].

We take r elements $\varepsilon_{1}, \ldots, \varepsilon_{r}$ in R_{o} with $\varepsilon_{1}=1$ such that the set $\left\{\overline{\varepsilon_{1}}, \ldots, \overline{\varepsilon_{r}}\right\}$ is a basis of the quotient ring $R_{o} / p R_{o}$ regarded as a vector space over its prime subfield $G F(p)$. Then we have the following.

Proposition 3.9 [11, Theorem 9]. If $\operatorname{char} R_{o}=p^{2}$, then $1+p R_{o}$ is a direct product of r cyclic groups $\left\langle 1+p \varepsilon_{j}\right\rangle$, each of order p, for any prime p.
Proposition 3.10 [11, Theorem 9]. Let char $R_{o}=p^{3}$. If $p=2$, then $1+p R_{o}$ is a direct product of 2 cyclic groups $\left\langle-1+4 \varepsilon_{1}\right\rangle$ and $\left\langle 1+4 \varepsilon_{1}\right\rangle$, each of order 2 , and $(r-1)$ cyclic groups $\left\langle 1+2 \varepsilon_{j}\right\rangle(j=2, \ldots, r)$, each of order 4 . If $p \neq 2$, then $1+p R_{o}$ is a direct product of r cyclic groups $\left\langle 1+p \varepsilon_{j}\right\rangle(j=1, \ldots, r)$, each of order p^{2}.
3.2.2. The structure of $1+R_{o} u_{i}+R_{o} u_{i}^{2}$. We now consider the structure of the subgroup $1+R_{o} u_{i}+R_{o} u_{i}^{2}$ of the p-group $1+J$. We first note that if $\operatorname{char} R_{o}=p$, then $R_{o}=G F\left(p^{r}\right)$ the field of p^{r} elements, if char $R_{o}=p^{2}$, then R_{o} is the Galois ring $\operatorname{GR}\left(p^{2 r}, p^{2}\right)$ of order $p^{2 r}$, and if char $R_{o}=p^{3}, R_{o}=G R\left(p^{3 r}, p^{3}\right)$ the Galois ring of order $p^{3 r}$.

We choose r elements $\varepsilon_{1}, \ldots, \varepsilon_{r}$ in R_{o} with $\varepsilon_{1}=1$ such that the set $\left\{\overline{\varepsilon_{1}}, \ldots, \overline{\varepsilon_{r}}\right\}$ is a basis of the quotient ring $R_{o} / p R_{o}$ regarded as a vector space over its prime subfield $G F(p)$. Then we have the following.

Proposition 3.11. Let char $R_{o}=p$. If $p=2$, then $1+R_{o} u_{i}+R_{o} u_{i}^{2}$ is a direct product of r cyclic groups $\left\langle 1+\varepsilon_{j} u_{i}\right\rangle(j=1, \ldots, r)$, each of order 4 . If $p \neq 2$, then $1+R_{o} u_{i}+R_{o} u_{i}^{2}$ is a direct product of $2 r$ cyclic groups $\left\langle 1+\varepsilon_{j} u_{i}\right\rangle$ and $\left\langle 1+2 \varepsilon_{j} u_{i}\right\rangle(j=1, \ldots, r)$, each of order p.

Proof. If char $R_{o}=2$, then $\left\langle 1+\varepsilon_{j} u_{i}\right\rangle$ is of order 4, for every $j=1, \ldots, r$ and for any $i=$ $1, \ldots, s$, and hence

$$
\begin{equation*}
\prod_{j=1}^{r}\left|\left\langle 1+\varepsilon_{j} u_{i}\right\rangle\right|=4^{r}=2^{2 r}=\left|1+R_{o} u_{i}+R_{o} u_{i}^{2}\right| . \tag{3.36}
\end{equation*}
$$

Therefore, the product $\prod_{j=1}^{r}\left\langle 1+\varepsilon_{j} u_{i}\right\rangle$ is direct.
Similarly, if char $R_{o}=p \neq 2$, the elements $1+\varepsilon_{j} u_{i}$ and $1+2 \varepsilon_{j} u_{i}$ are each of order p,

$$
\begin{equation*}
\left\langle 1+\varepsilon_{j} u_{i}\right\rangle \cap\left\langle 1+2 \varepsilon_{j} u_{i}\right\rangle=\{1\}, \tag{3.37}
\end{equation*}
$$

for every $j=1, \ldots, r$, and

$$
\begin{equation*}
\prod_{j=1}^{r}\left|\left\langle 1+\varepsilon_{j} u_{i}\right\rangle\right| \cdot \prod_{j=1}^{r}\left|\left\langle 1+2 \varepsilon_{j} u_{i}\right\rangle\right|=p^{r} \cdot p^{r}=p^{2 r}=\left|1+R_{o} u_{i}+R_{o} u_{i}^{2}\right| \tag{3.38}
\end{equation*}
$$

hence

$$
\begin{equation*}
1+R_{o} u_{i}+R_{o} u_{i}^{2}=\prod_{j=1}^{r}\left\langle 1+\varepsilon_{j} u_{i}\right\rangle \times \prod_{j=1}^{r}\left\langle 1+2 \varepsilon_{j} u_{i}\right\rangle, \tag{3.39}
\end{equation*}
$$

a direct product.
Proposition 3.12. Let char $R_{o}=p^{2}$. If $p=2$, then $1+R_{o} u_{i}+R_{o} u_{i}^{2}$ is a direct product of r cyclic groups $\left\langle 1+2 \varepsilon_{j} u_{i}\right\rangle$, each of order 2 , and r cyclic groups $\left\langle 1+3 \varepsilon_{j} u_{i}\right\rangle(j=1, \ldots, r)$, each of order 4 . If $p \neq 2$, then $1+R_{o} u_{i}+R_{o} u_{i}^{2}$ is a direct product of r cyclic groups $\left\langle 1+p \varepsilon_{j} u_{i}\right\rangle$, each of order p, and r cyclic groups $\left\langle 1+\varepsilon_{j} u_{i}\right\rangle(j=1, \ldots, r)$, each of order p^{2}.

Proof. Suppose char $R_{o}=p^{2}$. If $p=2,\left\langle 1+2 \varepsilon_{j} u_{i}\right\rangle$ is of order 2 and $\left\langle 1+3 \varepsilon_{j} u_{i}\right\rangle$ is of order 4,

$$
\begin{equation*}
\left\langle 1+2 \varepsilon_{j} u_{i}\right\rangle \cap\left\langle 1+3 \varepsilon_{j} u_{i}\right\rangle=\{1\}, \tag{3.40}
\end{equation*}
$$

for every $j=1, \ldots, r$ and any $i=1, \ldots, s$. Since

$$
\begin{equation*}
\prod_{j=1}^{r}\left|\left\langle 1+2 \varepsilon_{j} u_{i}\right\rangle\right| \cdot \prod_{j=1}^{r}\left|\left\langle 1+3 \varepsilon_{j} u_{i}\right\rangle\right|=2^{r} \cdot 4^{r}=2^{3 r}=\left|1+R_{o} u_{i}+R_{o} u_{i}^{2}\right|, \tag{3.41}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
1+R_{o} u_{i}+R_{o} u_{i}^{2}=\prod_{j=1}^{r}\left\langle 1+2 \varepsilon_{j} u_{i}\right\rangle \times \prod_{j=1}^{r}\left\langle 1+3 \varepsilon_{j} u_{i}\right\rangle \tag{3.42}
\end{equation*}
$$

is a direct product.

If $p \neq 2$, it is easy to check that $\left|\left\langle 1+p \varepsilon_{j} u_{i}\right\rangle\right|=p,\left|\left\langle 1+\varepsilon_{j} u_{i}\right\rangle\right|=p^{2}$ and

$$
\begin{equation*}
\left\langle 1+p \varepsilon_{j} u_{i}\right\rangle \cap\left\langle 1+\varepsilon_{j} u_{i}\right\rangle=\{1\} \tag{3.43}
\end{equation*}
$$

for every $j=1, \ldots, r$ and any $i=1, \ldots, s$. Since

$$
\begin{equation*}
\prod_{j=1}^{r}\left|\left\langle 1+p \varepsilon_{j} u_{i}\right\rangle\right| \cdot \prod_{j=1}^{r}\left|\left\langle 1+\varepsilon_{j} u_{i}\right\rangle\right|=p^{r} \cdot\left(p^{2}\right)^{r}=p^{3 r}=\left|1+R_{o} u_{i}+R_{o} u_{i}^{2}\right| \tag{3.44}
\end{equation*}
$$

it follows that the product

$$
\begin{equation*}
1+R_{o} u_{i}+R_{o} u_{i}^{2}=\prod_{j=1}^{r}\left\langle 1+2 \varepsilon_{j} u_{i}\right\rangle \times \prod_{j=1}^{r}\left\langle 1+3 \varepsilon_{j} u_{i}\right\rangle \tag{3.45}
\end{equation*}
$$

is direct.
Proposition 3.13. Let char $R_{o}=p^{3}$. If $p=2$, then $1+R_{o} u_{i}+R_{o} u_{i}^{2}$ is a direct product of r cyclic groups $\left\langle 1+\varepsilon_{j} u_{i}^{2}\right\rangle$, each of order 2 , and r cyclic groups $\left\langle 1+\varepsilon_{j} u_{i}\right\rangle(j=1, \ldots, r)$, each of order 4 . If $p \neq 2$, then $1+R_{o} u_{i}+R_{o} u_{i}^{2}$ is a direct product of r cyclic groups $\left\langle 1+\varepsilon_{j} u_{i}^{2}\right\rangle$, each of order p, and r cyclic groups $\left\langle 1+\varepsilon_{j} u_{i}\right\rangle(j=1, \ldots, r)$, each of order p^{2}.

Proof. Similar to the proofs of Propositions 3.11 and 3.12.
3.2.3. The structure of $1+R_{o} u_{i} u_{j}$. Choose r elements $\varepsilon_{1}, \ldots, \varepsilon_{r}$ in R_{o} with $\varepsilon_{1}=1$ such that the elements $\overline{\varepsilon_{1}}, \ldots, \overline{\varepsilon_{r}}$ form a basis of the quotient ring $R_{o} / p R_{o}$ regarded as a vector space over its prime subfield $G F(p)$. Then we have the following.

Proposition 3.14. The group $1+R_{o} u_{i} u_{j}$ is a direct product of r cyclic groups $\left\langle 1+\varepsilon_{l} u_{i} u_{j}\right\rangle(l$ $=1, \ldots, r)$, each of order p, for any characteristic $p^{k}(1 \leq k \leq 3)$ of R.

Proof. We first note that if the characteristic of R is p^{k}, where $1 \leq k \leq 3$, then $p u_{i} u_{j}=0$. Hence, $\left|1+R_{o} u_{i} u_{j}\right|=p^{r}$. Also, for any $x \in 1+R_{o} u_{i} u_{j}, x^{p}=1$.

Now, for r elements $\varepsilon_{1}, \ldots, \varepsilon_{r} \in R_{o}$ defined above, since for any $\nu \neq \mu$,

$$
\begin{equation*}
\left\langle 1+\varepsilon_{\nu} u_{i} u_{j}\right\rangle \cap\left\langle 1+\varepsilon_{\mu} u_{i} u_{j}\right\rangle=1, \tag{3.46}
\end{equation*}
$$

the result follows.
We now state the main results of this section.
Theorem 3.15. Let char $R=p$. If $p=2$, then $1+J$ is a direct product of $(s(s-1) / 2) r$ cyclic groups, each of order 2 , and sr cyclic groups, each of order 4 . If $p \neq 2$, then $1+J$ is a direct product of $\left(\left(s^{2}+3 s\right) / 2\right) r$ cyclic groups, each of order p.

Proof. This follows from Propositions 3.11 and 3.14 and by the fact that the order of $1+J$ is $p^{\left(\left(s^{2}+3 s\right) / 2\right) r}$.

Theorem 3.16. Let char $R=p^{2}$. Then $1+J$ is a direct product of $\left(\left(s^{2}+s+2\right) / 2\right) r$ cyclic groups, each of order p, and sr cyclic groups, each of order p^{2}, for any prime p.

Proof. This follows from Propositions 3.9, 3.12, and 3.14 and from the fact that the order of $1+J$ is $p^{\left(\left(s^{2}+5 s+2\right) / 2\right) r}$.
Theorem 3.17. Let char $R=p^{3}$. If $p=2$, then $1+J$ is a direct product of $2+\left(\left(s^{2}+s\right) / 2\right) r$ cyclic groups, each of order 2 , and $r-1+$ sr cyclic groups, each of order 4 . If $p \neq 2$, then $1+J$ is a direct product of $\left(\left(s^{2}+s\right) / 2\right) r$ cyclic groups, each of order p, and $(s+1) r$ cyclic groups, each of order p^{2}.
Proof. First observe that the order of $1+J$ is $p^{\left(\left(s^{2}+5 s+4\right) / 2\right) r}$. By Propositions 3.10, 3.13, and 3.14, the result follows.

4. The Main theorem

By Proposition 2.1, the group of units R^{*} of R contains a cyclic subgroup $\langle b\rangle$ of order $p^{r}-1$, and R^{*} is a direct product of $1+J$ and $\langle b\rangle$. Moreover, the structure of $1+J$ has been determined in Section 3 (Theorems 3.15, 3.16, and 3.17). We thus have the following result.

Theorem 4.1. The group of units R^{*}, of a commutative completely primary finite ring R with maximal ideal J such that $J^{3}=(0)$ and $J^{2} \neq(0)$, and with invariants p, k, r, s, and t, where $t=s(s+1) / 2$, is a direct product of cyclic groups as follows:
(i) if $\operatorname{char} R=p$, then

$$
R^{*} \cong \begin{cases}\mathbb{Z}_{2^{r}-1} \times\left(\mathbb{Z}_{4}^{r}\right)^{s} \times\left(\mathbb{Z}_{2}^{r}\right)^{\gamma}, & \text { if } p=2 \tag{4.1}\\ \mathbb{Z}_{p^{r}-1} \times\left(\mathbb{Z}_{p}^{r}\right)^{s} \times\left(\mathbb{Z}_{p}^{r}\right)^{s} \times\left(\mathbb{Z}_{p}^{r}\right)^{\gamma}, & \text { if } p \neq 2\end{cases}
$$

(ii) if char $R=p^{2}$, then

$$
R^{*} \cong \begin{cases}\mathbb{Z}_{2^{r-1}} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{r}\right)^{s} \times\left(\mathbb{Z}_{2}^{r}\right)^{s} \times\left(\mathbb{Z}_{2}^{r}\right)^{\gamma}, & \text { if } p=2, \tag{4.2}\\ \mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{r}\right)^{s} \times\left(\mathbb{Z}_{p^{2}}^{r}\right)^{s} \times\left(\mathbb{Z}_{p}^{r}\right)^{\gamma}, \quad \text { if } p \neq 2,\end{cases}
$$

(iii) if $\operatorname{char} R=p^{3}$, then

$$
R^{*} \cong \begin{cases}\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4}^{r-1} \times\left(\mathbb{Z}_{2}^{r}\right)^{s} \times\left(\mathbb{Z}_{4}^{r}\right)^{s} \times\left(\mathbb{Z}_{2}^{r}\right)^{\gamma}, & \text { if } p=2, \tag{4.3}\\ \mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{2}}^{r} \times\left(\mathbb{Z}_{p}^{r}\right)^{s} \times\left(\mathbb{Z}_{p^{2}}^{r}\right)^{s} \times\left(\mathbb{Z}_{p}^{r}\right)^{\gamma}, & \text { if } p \neq 2,\end{cases}
$$

where $\gamma=\left(s^{2}-s\right) / 2$.
Proof. Follows from Propositions 2.1 and 3.9 through 3.14 and Theorems 3.15, 3.16, and 3.17.

Remark 4.2. The structure of the multiplicative groups of commutative completely primary finite rings R with maximal ideals J such that $J^{3}=(0)$ and $J^{2} \neq(0)$, for which $t<s(s+1) / 2$ for a fixed nonnegative integer s, will be considered in subsequent work.

592 Unit groups of finite rings

References

[1] C. W. Ayoub, On finite primary rings and their groups of units, Compositio Math. 21 (1969), 247-252.
[2] C. J. Chikunji, On a class of finite rings, Comm. Algebra 27 (1999), no. 10, 5049-5081.
[3] \qquad , On a class of rings of order p^{5}, Math. J. Okayama Univ. 45 (2003), 59-71.
[4] W. E. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc. 33 (1972), 25-28.
[5] D. Dolzan, Group of units in a finite ring, J. Pure Appl. Algebra 170 (2002), no. 2-3, 175-183.
[6] L. Fuchs, Abelian Groups, 3rd ed., International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, New York, 1960.
[7] G. Ganske and B. R. McDonald, Finite local rings, Rocky Mountain J. Math. 3 (1973), no. 4, 521-540.
[8] R. W. Gilmer Jr., Finite rings having a cyclic multiplicative group of units, Amer. J. Math. 85 (1963), 447-452.
[9] D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups, vol. 40, Mathematical Surveys and Monographs, no. 1, American Mathematical Society, Rhode Island, 1994.
[10] K. R. Pearson and J. E. Schneider, Rings with a cyclic group of units, J. Algebra 16 (1970), 243251.
[11] R. Raghavendran, Finite associative rings, Compositio Math. 21 (1969), 195-229.
[12] I. Stewart, Finite rings with a specified group of units, Math. Z. 126 (1972), 51-58.
Chiteng'a John Chikunji: Department of Mathematics, University of Transkei, Private Bag X1, Umtata 5117, South Africa

E-mail address: chikunji@getafix.utr.ac.za

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

