
Meat Science 120 (2016) 93–99

Contents lists available at ScienceDirect

Meat Science

j ourna l homepage: www.e lsev ie r .com/ locate /meatsc i
The impact of growth promoters on muscle growth and the potential
consequences for meat quality
Tim Parr a,⁎, Molebeledi H.D. Mareko b, Kevin J.P. Ryan a, Krystal M. Hemmings c,
David M. Brown a, John M. Brameld a

a Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, University of Nottingham, Loughborough, Leics LE12 5RD, UK
b Botswana College of Agriculture, Gaborone, Botswana
c College of Life and Natural Sciences, Department of Natural Sciences, University of Derby, Derby DE22 1GB, UK
⁎ Corresponding author.
E-mail address: tim.parr@nottingham.ac.uk (T. Parr).

http://dx.doi.org/10.1016/j.meatsci.2016.04.022
0309-1740/© 2016 Elsevier Ltd. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 8 February 2016
Received in revised form 17 April 2016
Accepted 19 April 2016
Available online 20 April 2016
To meet the demands of increased global meat consumption, animal production systems will have to become
more efficient, or at least maintain the current efficiency utilizing feed ingredients that are not also used for
human consumption. Use of growth promoters is a potential option for increasing production animal feed effi-
ciency and increased muscle growth. The objective of this manuscript is to describe the mechanisms by which
the growth promoters, beta-adrenergic agonists and growthhormone,mediate their effects,with specific consid-
eration of the aspects which have implications for meat quality.
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1. Introduction

The predicted increase inworld population to 9 billion by 2050 is ex-
pected to be associated with an increase in the urban population, with
an estimated 70% being in an urban environment compared to 49%
today and, hopefully, the inevitable increase in incomes (FAO, 2009).
To meet this demand it is estimated that the food production will
have to increase, particularly for commodities associatedwith higher in-
comes, such asmeat,with the predicted demandmore than doubling by
2050 (FAO, 2009).

To date, significant advances in animal genetics and animal nutrition
have been made to meet the increasing demand. To achieve the maxi-
mum growth potential, high quality feed ingredients are required.
Feed ingredients account for a large proportion of the overall costs of an-
imal production, particularly in non-ruminant species (Patience,
Rossoni-Serao, &Gutierrez, 2015). Continuing to rely on the same ingre-
dients, in competition with human nutrition and biofuels, mean prices
will inevitably increase. Therefore the cost of meat and animal products
will also increase. It has been estimated that for many agricultural com-
modities the rate of production has already reached a peak (Seppelt,
Manceur, Liu, Fenichel, & Klotz, 2014). Hence, if we are to continue to
meet the demand for animal products, we cannot simply feed more an-
imals the same feed ingredients, as that would require more crops, land
and water (Foresight, 2011; Godfray et al., 2010). Therefore the aim of
current research is to improve the efficiency with which animals utilize
their feeds, giving more product for the same amount of feed or the
same amount of product for less feed.

Through selective breeding and improved diet formulations over the
last 20–30 years, feed efficiency of pigs (Patience et al., 2015) and
chickens (Siegel, 2014) has improved, with Feed Conversion Ratio
(FCR) values of 2.0 or less currently achievable (i.e. N50% efficiency).
The UN suggests productivity is likely to be enhanced in the future
through better animal disease control, improved irrigation and water
management practises, and better fertilizers (FAO, 2009). In terms of
animal production the increase in productivity could also be increased
through the continued utilization of genetic selection through breeding
programmes. Also it is probably inevitable that molecular biology tech-
nologieswill be accepted andGMOorganismswill be utilized for animal
production. However throughout the world there is an increasing utili-
zation of growth promoters. A goal of all these technologies is to in-
crease the efficiency of feed utilization that ideally results in an
increase in lean carcass weight. A predominant group of growth pro-
moters are those which are based on endocrine factors such as anabolic
steroids, growth hormone (GH, also called somatotropin, ST) and beta-
adrenergic agonists (BA). These agents have metabolic modifying char-
acteristics that result in enhanced growth. In addition there are a variety
of other types of growth promoters, such as antibiotics, whose predom-
inant affect is thought to be the increased efficiency of utilization of nu-
trients from the gut. Although the use of growth promoting agents is
banned in the European Union (EU), they are legally used in many
other countries.
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Increases in lean tissue deposition (increased muscle mass), de-
creases in fat deposition, along with repartitioning nutrients away
from fat to muscle growth, are some of the predominant objectives of
animal production systems focused on generating meat. Therefore
these are key features of animal growth that growth promoters are de-
signed to influence. The actions of hormonal based growth promoters'
are through mechanisms that influence processes at a cellular level. In
addition to affecting protein turnover to increase protein accretion,
they also have effects on energy metabolism. This manuscript will ex-
amine the effects of hormonal based growth promoters on carcass pa-
rameters that influence meat quality, particularly growth hormone
(GH) and beta-adrenergic agonists (BA), and will predominantly focus
on their effects in pigs.

2. Growth hormone

Growth hormone is a peptide hormone produced by the anterior pi-
tuitary and is involved in the processes of development and growth that
includes skeletalmuscle, bone and adipose tissue (Beermann, 1994). In-
creased plasma GH has the effect of redirecting nutrients away from ad-
ipose tissue and toward muscle and bone (Etherton & Bauman, 1998).
The effect of GH is to stimulate the production of insulin like growth fac-
tor (IGF-1) from the liver. These observations led to the hypothesis that
GH effects, particularly on growth, were mediated by IGF-1 originating
from the liver (Daughaday, 2000). However GH can stimulate IGF-1 ex-
pression in other tissues, particularly bone but also skeletal muscle
(Brameld et al., 1996; Velloso, 2008: Wang, Bikle, & Chang, 2013). In
the circulation IGF-1 is associated with insulin like growth factor bind-
ing proteins (IGFBP) which prolong its half-life (Boisclair, Rhoads,
Ueki, Wang, & Ooi, 2001). The effect of IGF-1 can be mediated through
dimers of the IGF-1 receptor as well as IGF-1 receptor/insulin receptor
hybrids (Denley, Cosgrove, Booker, Wallace, & Forbes, 2005) and subse-
quently activates multiple signalling pathways. In muscle the predomi-
nant pathways are the mitogen-activated protein kinase kinase/
extracellular signal-regulated kinase (MEK/ERK pathway, which tends
to be associated with proliferative growth, whilst the protein kinase B
-mechanistic target of rapamycin - ribosomal protein S6 kinase (Akt–
mTOR–S6K) pathway is predominantly responsible for protein synthe-
sis but also affects protein degradation (Clemmons, 2009).

Growth hormone is approved for use in 14 countries, including
Australia, for administration to pigs to improve growth characteristics
(Dunshea, Cox, Borg, Sillence, & Harris, 2002). As the GH is a peptide it
has to be administered by regular injection. Its action on pig growth
has beenwell characterized, reducing feed intakewhilst simultaneously
increasing lean and reducing fat deposition (Etherton et al., 1987). Un-
surprisingly, due to the signalling pathway activated by GH-IGF-1 axis,
increased protein accretion in GH treated pigs is stimulated by protein
synthesis rather than a decrease in protein degradation. However
there are inconsistent reports in the literaturewith some reporting sim-
ilar increases in protein synthesis and breakdown but overall net in-
creased nitrogen balance (Tomas et al., 1992), whilst others have
reported that protein synthesis is increased but protein degradation ap-
pears not to be affected (Bush et al., 2003) and some have described
even a decrease in degradation (Vann et al., 2000). The effect of exoge-
nous GH on adipose tissue is to reduce fat synthesis which results in re-
ductions in back fat (Krick et al., 1992). Dunshea, D'Souza, Pethic,
Harper, and Warner (2005) carried out a comprehensive review on
the effects of GH on pig meat quality. Using a meta-analysis approach
on published data, they concluded that GH decreased intramuscular
fat by 12% and increased shear force by 9%. The effects on shear force
are unlikely to be due to a large decrease in the proteolytic activity.
Therefore the increased shear force is likely to be due to changes in tem-
perature transfer to themeat, either during chilling the carcass, thereby
affecting rigour development or effects of heat transfer during cooking
which influences denaturing of proteins. Overall Dunshea et al. (2005)
concluded that GH causes a small increase in shear force and the sensory
perception of meat from treated pigs is tough, but it was unlikely that
that this could be detected by consumers.

3. Beta-adrenergic agonists

The BAs are analogues of the endogenous catecholamines, adrena-
line and noradrenaline. When administered to livestock species they
have positive effects on growth and nutrient repartitioning. Beta-2 ad-
renergic receptor specific agonists, such as clenbuterol and cimaterol,
have the greatest growth effect; however ractopamine, which binds to
both beta-1 and -2 adrenergic receptors (Mills, Kissel, Bidwell, &
Smith, 2003), also has similar growth effects. The BAgenerally have pos-
itive effects on weight gain, FCR, and act as strong repartitioning agents,
increasing muscle growth whilst decreasing adipose tissue deposition
(Meersman, 1998).

The BAs mediate their growth effects through the BA receptor. The
subtypes of beta adrenergic receptors (BAR) vary depending on the tis-
sue. For example, in pigs skeletal muscle has more BAR2 than BAR1
whilst in adipose tissue it is the reverse (Liang & Mills, 2002). BAR3
are thought to be present on porcine adipocytes (McNeel &
Mersmann, 1995). The BAR activates the adenylate cyclase pathway
which subsequently produces cyclic adenosine monophosphate
(cAMP), which then activates protein kinase A. This kinase can alter en-
zyme activity through phosphorylation. For example the phosphoryla-
tion dependent cascade results in phosphorylase being activated and
glycogen being degraded to glucose-1-phosphate. In addition, protein
kinase A can activate the transcription factor, cAMP response element
binding protein (CREB), which then regulates the transcription of
genes that have a functional cAMP responsive elementwithin their reg-
ulatory regions (Altarejos & Montminy, 2011). Therefore these agents
have an immediate effect on enzyme activity, but can also alter tran-
scription of a number of genes.

The first BA to be licenced for use as a feed additivewas ractopamine
for use in pigs in 1999. A significant advantage of these agents when
compared to GH is that they can be administered in feed. The predom-
inant effect of BA is to increase lean depositionwhilst also decreasing fat
deposition (Meersman, 1998). The BAs have strong effects on muscle
hypertrophy and appear to be differentially effective across farm spe-
cies, with ruminant species (cattle and sheep) responding the strongest,
being particularly effective in older animals (Meersman, 1998). The
early studies on the effects of BA in livestock indicated that these agents
had a strong effect of decreasing protein degradationwithout increasing
protein synthesis (Bohorov, Buttery, Correia, & Soar, 1987). However
subsequent studies in pigs treated with ractopamine have indicated
that protein synthesis, particularly ofmyofibrillar proteins, is stimulated
(Adeola, Ball, & Young, 1992). The effects on fat deposition are not as
clear as for GH, particularly in pigs, however it appears that ractopamine
reduces backfat thickness in pigs, but this is not as dramatic as the effect
of BA in ruminant species (Dunshea et al., 2005). After reviewing a large
number of studies, Dunshea et al. (2005) concluded that the use of BA in
ruminants increased the shear force, with cimaterol increasing shear
force by 60%. Using a meta-analysis approach on published data they
also described how, in pigs, the BAs ractopamine and salbuterol had
no effect on IMF, whilst cimaterol caused a decrease. All these BA had
the effect of increasing shear force in pigs, but again cimaterol had the
greatest negative effect, but the effects were not as great as in rumi-
nants. Unlike GH, the effect of BA on tenderness appears to bemediated
through their strong inhibitory effects on protein degradation (see
below), rather than effects on IMF.

4. Fibre type and meat quality

Skeletal muscle is made up of muscle fibres which have differing
contractile and metabolic characteristics. Muscle fibres can be histo-
chemically classified according to their actomyosin ATPase activity
into three types, types I, IIA and IB, which have a contractile and
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associatedmetabolic characteristics of slow twitch oxidative, fast twitch
oxidative and fast twitch glycolytic, respectively (Brooke & Kaiser,
1970). When considered at a molecular level the differences in fibre
type are, in part, determined by the myosin heavy chains (MyHC)
they express, as this protein is a determinant of muscle contractile
speed and thereby the associated metabolism required to support this.
There are four MyHC isoforms (types I, IIa, IIx and IIb) which has led
to a revision in the classification of fibre types as types I, IIA, IIX and
IIB with a rank order of contraction speed of I b IIA b IIX b IIB
(Schiaffino & Reggiani, 1996). The MyHCIIb isoform is expressed in ro-
dents, but absent from most large animals such as cattle and sheep, al-
though pigs do express this isoform (Lefaucheur, 2010). To support
the contraction of these fibres there are associated metabolic character-
istics. At one extreme, the slow twitch fibres that express high levels of
MyHCI protein have a dependence on oxidative (aerobic) metabolism,
as they can maintain a low power output. These fibres have a good
blood supply and tend to have a low glycogen and high triglyceride con-
tent and fatigue slowly, so are used for sustained contraction. In con-
trast, the fast twitch type II fibres have a dependence on glycolytic
(anaerobic)metabolism. These fibres have a relatively low blood supply
and have a high glycogen content and low triglyceride content and fa-
tigue relatively quickly so are used for rapid, intense contraction,
which cannot be sustained for long periods. The type IIB fibres have
the highest glycolytic metabolism capacity. The types IIA and IIX fibres
have metabolic characteristics that, although still enable a high degree
of glycolytic metabolism, increasingly have the capacity to carry out ox-
idative metabolism, hence they are classified as oxidative-glycolytic,
particularly the type IIA fibres which have the greatest aerobic capacity
(Schiaffino& Reggiani, 1996). For glycolytic fibres (types IIA, IIX and IIB)
there is not a simple relationship between the expression of the fast
MyHC protein isoforms (IIa, IIx and IIb) and the fibre type classification
based on contractile andmetabolic characteristics. For example in Large
White pig longissimus muscle, fibres classified as type IIB included
MyHC IIx expressing fibres, as well as hybrid fibres expressing both
MyHC IIx and IIb (Lefaucheur, 2010). These hybrid fibres are a particular
characteristic of the fast glycolytic fibres, which means using MyHC ex-
pression data to determine fibre type (as normally defined by contrac-
tile and metabolic characteristics), should be done with caution.

Based on the association between the metabolic characteristics of
muscle and fibre type, it would be expected that IMF content would
be lower in muscles that contain a high proportion of fast fibre types,
particularly those containing a high proportion of type IIB fibres, for ex-
ample in pigs. Recent work in pigs has indicated no clear relationship
between proportions of types I and IIB fibres and IMF content (Kim
et al., 2013), although the total number of fibres and density of type
IIB fibres were positively related to the IMF content (Kim et al., 2013).
Henckel, Oksbjerg, Erlandsen, Barton-Gade, and Bejerholm (1997)
made a similar observation in pigs, that the frequency of type IIB fibres
was positively correlated to IMF. However those who have reviewed
this area have concluded that there does not appear to be a clear rela-
tionship between the quantity of intramuscular adipocytes and fibre
type (Lefaucheur, 2010; Hocquette et al., 2010). In relation to themeta-
bolic activity of type IIB fibres, these fast-twitch glycolytic fibres have a
higher dependence on glycolytic metabolism, therefore they have
higher glycogen contents. As a result, muscles that have a high propor-
tion of these types of fibres tend to have an increased rate of postmor-
tem pH decline, along with a lower ultimate pH, as well as decreased
water holding capacity and a paler colour (Choe et al., 2008; Larzul
et al., 1997; Ryu & Kim, 2005). The fast type fibres have greater cross
sectional areas (CSA) than the slowfibres,with the type IIBfibres having
the greatest CSA. However muscles containing fibres with a high CSA
have been reported as having a lower meat quality in both cattle
(Renand, Picard, Touraille, Berge, & Lepetit, 2001) and pigs (Karlsson
et al., 1993; Kim et al., 2013). However the relationship between CSA
per se and meat quality is not absolutely clear. Studies that have re-
ported this relationship have often done so in animals that have variant
genes or are subject to growth promoter treatments, which show a
change in CSA, but this is associated with alterations in metabolic activ-
ity (Lefaucheur, 2010). For example, although callipyge lambs do have
fibres with a large CSA, their muscles contain very high concentrations
of calpastatin, which is thought to be amore significant factor in causing
their extreme toughness (Duckett, Snowder, & Cockett, 2000).

5. Proteolytic systems and meat quality

The final tenderness of meat depends on the degree of alteration of
the muscle structural and associated proteins postmortem (Hopkins &
Thompson, 2002). Specific myofibrillar, myofibril cytoskeleton and
costamere proteins are subjected to cleavage, with selected and re-
stricted cleavage of the major myofibrillar proteins such as actin and
myosin (Goll, Thompson, Taylor, & Christiansen, 1992; Taylor,
Geesink, Thompson, Koohmaraie, & Goll, 1995a; Lametsch et al.,
2003). There are several endogenous proteolytic systems present in
muscle, which could participate in postmortem proteolysis, these in-
clude the cathepsin, proteasome, caspase and calpain systems (Kemp,
Sensky, Bardsley, Buttery, & Parr, 2010). Generally it is considered that
the cathepsin system does not play a role in meat tenderisation, as
there is little association between cathepsin activity and the variation
in the tenderness of meat (Whipple et al., 1990).

The proteasome is a multicatalytic protease complex involved in the
regulation of a number of basic cellular pathways, by their degradation
of proteins in the cytosol and nucleus (Coux, Tanaka, & Goldberg, 1996).
Proteolysis by the proteasome is an ubiquitin-dependent process; poly-
ubiquitinated proteins are subsequently recognized by the proteasome,
which then degrades them (Taillandier, Combaret, Samuels, Bechet, &
Attaix, 2004). This process is ATP-dependent requiring a number of en-
zymes to ubiquitinate target proteins. Inmuscle there are ubiquitin sys-
tem ligases which appear to be critical to the proteasomes involvement
in protein degradation. These are muscle RING finger 1 (MuRF1) and
muscle atrophy F-box (MAFbx) (Bodine & Baehr, 2014.). These ligases
are strongly associated with muscle atrophy conditions (Glass, 2005).
Although in vivo the proteasome requires ATP for target proteins to be
ubiquitinated, the proteasome can carry out proteolytic activitywithout
requiring ATP or ubiquitin (Peters, Franke, & Kleinschmidt, 1994). In-
deed proteasome activity is maintained during the postmortem condi-
tioning period, with reported substantial activity still detectable at
7 days postmortem and at pH levels of less than 6 (Lamare, Taylor,
Farout, Briand, & Briand, 2002). Taylor et al. (1995b) and Robert et al.
(1999) found that the proteasome was capable of causing proteolysis
of myofibril proteins including nebulin, myosin, actin and tropomyosin
in bovine myofibrils. However, as emphasized by Koohmaraie and
Geesink (2006), the degradation pattern of myofibrillar proteins in in-
cubations with proteasome is not the same as that seen in postmortem
muscle, although this does not appear to exclude the proteasome from
making a contribution to the process of postmortem proteolysis
(Houbak, Ertbjerg, & Therkildsen, 2008).

The caspase system is involved in the process of programmed cell
death (apoptosis). The system consists of a number of enzymes whose
substrates include cytoskeletal proteins which are degraded both in ap-
optosis and in postmortemmuscle. It has been proposed that the prote-
ase family of caspases could be active postmortem and contribute to
tenderization (Sentandreu, Coulis, & Ouali, 2002; Ouali et al., 2006;
Kemp et al., 2010; Kemp & Parr, 2012). Of particular interest are the ef-
fector caspases, such as caspases 3 and 7, which are activated by up-
stream initiator caspases, such as caspase 9, and once activated target
and cleave specific substrates, resulting in cell disassembly (Fuentes-
Prior & Salvesen, 2004). There have been descriptions of caspase activity
aswell as cleavage of indicative caspase substrates which are associated
with meat tenderization, including potential effects on the calpain in-
hibitor, calpastatin (Kemp& Parr, 2012). However others have reported
no changes in caspase activity postmortem, suggesting a lack of involve-
ment in tenderization (Underwood, Means, & Du, 2008), whilst others
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have indicated associations between caspase activity andmyofibril pro-
tein degradation as well as postmortem proteolysis (Huang, Huang, Xu,
& Zhou, 2008; Huang, Huang, Zhou, Xu, & Xue, 2011). Howeverwhether
this proteolytic system plays a major role in influencing tenderness is
debatable. If it does have a role in the postmortemproteolysis which in-
fluences meat tenderness, it is likely to be contributory rather than
causative.

Of all theproteolytic systems the calpain system is the onewhichhas
the strongest experimental evidence demonstrating a role in post-
mortem proteolysis (Kemp et al., 2010; Koohmaraie & Geesink, 2006;
Sentandreu et al., 2002). In skeletal muscle, the calpain system consists
of three proteases, ubiquitously expressed isoforms Calpain-1, Calpain-
2, and p94 (or Calpain-3) and the calpain-specific endogenous inhibitor,
calpastatin (Goll, Thompson, Li, Wei, & Cong, 2003; Wendt, Thompson,
& Goll, 2004). Experimental evidence suggests Calpain-1 has the most
significant role in postmortem proteolysis and meat tenderisation.
Much of this evidence has been based on observations on the associa-
tion between Calpain-1 activity, as well as expression, to tenderness
(Koohmaraie & Geesink, 2006). The important role of Calpain-1 in the
tenderisation process was further strengthened by observations made
in calpain-1 knockout mice, which indicate a direct effect of Calpain-1
in postmortem proteolysis and thereby the development of tender
meat (Geesink, Kuchay, Chishti, & Koohmaraie, 2006). A consistent ob-
servation of the calpain system's involvement in tenderness is that
high levels of calpastatin are associated with poor quality meat; the
model being that high levels of calpastatin reduce the activity of calpain
(predominantly Calpain-1) thereby reducing the proteolysis required
for tender meat (Kemp et al., 2010).

Changing animal nutrition has been shown to alter calpain expres-
sion and is associated with changes in meat quality. In pigs, a moderate
reduction in both protein (14.95% vs 11.08%) and digestible energy
(13.81 MJ vs 12.55 MJ) intake has been shown to attenuate expression
of Calpain-1 mRNA and this was associated with decreased Warner-
Bratzler shear force (Tang et al., 2010). However, much earlier studies
in lambs found that a more severe reduction in feed intake over
6 weeks (so average daily live weight gain was 14% of controls), did
not alter calpain or calpastatin activity (Higgins, Lasslett, Bardsley, &
Buttery, 1988). Changes in the calpain system activity have also been
described associated with increased feed efficiency. Pigs selected for
low residual feed intake (RFI), where their observed feed intake is
lower than expected (based on body weight gain and back fat depth),
have reduced protein degradation compared to those with high RFI
(Cruzen et al., 2013). Relative to high RFI pigs, low RFI animals had
lower proteasome activity, greater calpastatin activity and decreased
Calpain-1:calpastatin activity ratio. These changes were associated
with slowed postmortem muscle proteolysis, indicated by decreased
Troponin T degradation. This study is consistent in showing that a de-
crease in the proteolytic process and subsequent reduction inmeat ten-
derness is predominantly associated with increased inhibition of
calpains. In addition, this study suggests that if increased feed efficiency
is achieved by a decrease in protein degradation, this could have a det-
rimental effect on meat quality.

Our studies on a random selection of commercially slaughtered pigs
have shown that a high level of calpastatin (both activity and protein
levels) in the first few hours after slaughter are associated with an in-
creased incidence of toughness at 8 days postmortem (Sensky et al.,
1998; Parr et al., 1999). The observations that Calpain-1 and calpastatin
are important determinants for tender meat has lead to efforts to iden-
tify genetic markers that could be used to select for postmortem
tenderisation of meat. Genetic tests for variation in both the Calpain-1
(CAPN1) and calpastatin (CAST) genes, which are associated with ten-
derness, have been identified for cattle (Page et al., 2004; White et al.,
2005; Casas et al., 2006). In pigs, similar efforts have identified genetic
markers for CAST which have been suggested to be markers of pork
meat quality traits (Ciobanu et al., 2004; Nonneman et al., 2011), but
as yet predictive variations in CAPN1 have not been reported.
6. Effects of BA and GH on fibre type, proteolytic systems
and metabolism

The objective of administration of the growth promoters is to ideally
increase feed efficiency but at the same time increase lean tissue depo-
sition (increase muscle mass) and decrease fat deposition, thereby
repartitioning nutrients away from fat to muscle growth. Given that
post-natalmuscle growth involves hypertrophy rather than hyperplasia
it might be expected that stimulated growth would result in increased
muscle fibre hypertrophy. Of the growth promoters BA and GH, the for-
mer has the strongestmuscle growth effects. Both BA and GHhave been
shown to increasemuscle fibre hypertrophy (Kim& Sainz, 1992), but to
amore limited extent for GH (Solomon, Campbell, & Steele, 1990). InGH
treated animals there appears to be no effect on fibre type distribution
and this is particularly the case for pigs (Aalhus, Best, Costello, &
Schaefer, 1997; Oksbjerg et al., 1995). However for animals treated
with BA there are well documented effects on fibre type distributions.
Early studies in lambs indicated that the BA cimaterol (10 ppm, oral
dose, for 5 weeks) caused an increase in type II fibres compared to
type I (Beermann et al., 1987). In pigs treated over a four week period
with the BA, ractopamine (20 ppm, oral dose), there was a sustained in-
duction of MyHCIIb in longissimus muscle (Gunawan, Richert,
Schinckel, Grant, & Gerrard, 2007). This change in gene expression
takes place early in the treatment, within one day forMyHCIIb. Likewise
in pigs following seven days of treatment with ractopamine (10 ppm,
oral dose), in longissimus muscle there was a trend for MyHCIIb
mRNA to increase and for MyHCIIa mRNA to decrease (Brown et al.,
2012) and this was before a significant increase in muscle weights
was observed (Ryan et al., 2012). In the same study, pigs were also
treated with GH for seven days (10 mg/pig, intramuscular injection
every 2 days). There was a trend for decrease in MyHCIIb gene expres-
sion inmuscleswith GH, but no indication of changes inmuscleweights
(Brown et al., 2012). Similarly in lambs, following a six day treatment
with cimaterol (10 ppm, oral dose), there was a decrease in MyHCIIa
isoform gene expression and an increase inMyHCIIx/b, which consisted
of an induction of MyHCIIb, a MyHC not normally expressed in sheep
muscles (Hemmings, Daniel, Buttery, Parr, & Brameld, 2015). This
switch to fast MyHC gene expression was accompanied by an increase
in selective muscle weights and CSA (unpublished observations). It
was interesting to note that although MyHC gene expression was al-
tered after six days, the quantity of MyHC protein did not change
(Hemmings et al., 2015). However therewas a decrease in isocitrate de-
hydrogenase activity which suggested that there was a change to a less
oxidative metabolism, before there was a change in the contractile pro-
teins associated with a fast-glycolytic fibre type (Hemmings et al.,
2015).

The net deposition of protein often results in an increase in protein
synthesis, however alterations in protein degradation can also take
place. Growth hormone stimulated increases in IGF-1 potentially medi-
ates its effects through MEK/ERK and Akt–mTOR–S6K pathways. Al-
though IGF-1 stimulated protein synthesis can be influenced by both
pathways, the effect of IGF-1 on protein degradation is mediated by
the latter. The Akt–mTOR–S6K pathway also controls protein degrada-
tion in skeletal muscle by AKT phosphorylating the forkhead box pro-
tein (FOXO) transcription factors, thereby reducing the gene
expression of the ubquitin ligases MAFbx and MuRF1 (Glass, 2005).
These two ubiquitin ligases are important in muscle protein turnover,
as they target myofibrillar proteins for degradation through the
ubiquitin-proteasome system (Bodine & Baehr, 2014).

For BA, early reports on the mechanism of its action described how
clenbuterol treatment for five weeks (10 ppm, oral dose) significantly
reduced muscle protein degradation in lambs (Bohorov et al., 1987), al-
though subsequent studies have shown BA also stimulate protein syn-
thesis, for example in pigs given ractopamine for four weeks (20 ppm,
oral dose) (Adeola et al., 1992). The characteristic effect of orally admin-
istered BA such as clenbuterol or cimaterol on protein degradation is an
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increase in the expression and activity of calpastatin (Higgins et al.,
1988; Parr, Bardsley, Gilmour, & Buttery, 1992). This observation has
been confirmed by others, particularly in ruminants (Kretchmar,
Hathaway, Epley, & Dayton, 1990; Wheeler & Koohmaraie, 1992), but
also in pigs (Parr, Sensky, Bardsley, & Buttery, 2001). In a more recent
study, Douillard et al. (2012) described how over expression of exoge-
nous calpastatin inmouse tibialis anterior attenuated themuscle hyper-
trophy and the shift to a fast muscle fibre type, stimulated by
clenbuterol treatment for 21 days (subcutaneous injection, 1 mg/kg
body weight/day). This was in spite of AKT and associated factors
being phosphorylated, an event which is normally associated with in-
creasedmuscle synthesis. The authors suggested that inhibition of clen-
buterol stimulated hypertrophy by calpastatin over-expression did not
involve inhibition of protein synthesis. They also suggested that the ex-
ogenous calpastatin expression inhibited calpain's role in remodelling
the muscle myofibrillar proteins. Care must be taken in accepting this
interpretation, as Douillard et al. (2012) described how in control
mice treated with only clenbuterol for 21 days (subcutaneous injection,
1 mg/kg body weight/day) there was decreased calpastatin expression.
This contradicts previous studies in rodents which have shown BA in-
creases calpastatin in mice treated with formoterol for 28 days (intra-
peritoneal injection, 100 μg/kg body weight/day) (Koopman et al.,
2010) and rats treated with clenbuterol for 3 days (intraperitoneal in-
jection, 3 mg/kg body weight/day) (Goncalves et al., 2012). Overall
the majority of studies demonstrate treatment with BA increases mus-
cle calpastatin. The effect of BA on normal muscle is to enhance protein
synthesis and reduce calcium-dependent proteolysis, which appears to
be mediated through an increase in calpastatin. However in mice with
denervatedmuscle, which induces atrophy, treatment with clenbuterol
for 3 days (intraperitoneal injection, 3 mg/kg body weight/day) stimu-
lated protein synthesis and inhibited the proteolysis mediated by both
the proteasome and lysosome, reduced expression of the ubiquitin li-
gases, MAFbx and MuRF1, as well as cathepsin L, without a significant
effect on calcium dependent proteolysis (Goncalves et al., 2012). This
suggests that the calpain system mediated proteolysis is associated
more with normal muscle protein turnover, rather than that associated
with atrophy.

Our recent studies have sought to examine the effects of GH or BA
treatment on muscle proteolytic systems. In pigs treated with either
ractopamine (20 ppm, oral dose) or GH (10 mg/pig, intramuscular in-
jection every 2 days) for 27 days there was a significant effect of this
BA on muscle weights and this was associated with a switch to in-
creased expression of the MyHC isoforms associated with fast fibre
types, whereas there was no effect of GH (Brameld et al., 2015). In
terms of effects on meat quality, there was an indication of an increase
in shear force in BA treated animals (P = 0.107). There was a trend
(P b 0.1) for increased calpastatin protein (detected by western blot)
in BA treated animals, but there was no effect on caspase 3/7 activity
(when assessing activity these two caspases are indistinguishable)
(Mareko, Ryan, Brown, Brameld, & Parr, 2013a). When proteasome ac-
tivity was assessed there was a change in the activity of its subunits;
these have trypsin-like, caspase-like and chymotrypsin-like activity.
When these activitieswere assessed individually, the caspase-like activ-
ity was significantly reduced in both BA and GH treated pigs, and the
chymotrypsin-like activity was increased in BA treated animals only
(Mareko, Ryan, Brown, Brameld, & Parr, 2013b). Overall these data
would suggest that the effect of the BA ractopamine on muscle proteol-
ysis is not as great as some of the other BAs used in earlier studies, par-
ticularly cimaterol and clenbuterol.

In addition to examining changes in proteolytic activity in pigs
treated with the GH (10 mg/pig, intramuscular injection every 2 days)
and ractopamine (20 ppm, oral dose) for 27 days, we also examined
the effect of these growth promoters on gene expression in the
Longissimus muscle at days 1, 3, 7, 13 and 27 of treatment. The changes
in the transcriptomeweremeasured using a pig transcriptomemicroar-
ray. Although our previous studies had indicated stimulatory effects of
BAs on the gene expression of the calpain system in pigs, particularly in-
creases in calpastatin gene expression (Parr et al., 2001), we found no
consistent significant effects on gene expression of any major proteo-
lytic system in muscle across the time course. However as might have
been expected, the greatest gene expression responses were seen with
ractopamine treatment. There was an increase in the expression of
genes encoding glycolysis enzymes but a decreased expression of
genes associatedwith oxidative respiration. However themost predom-
inant effectwas a co-ordinate increase in serine synthesis pathway gene
expression, with increased expression of phosphoglycerate dehydroge-
nase (PHGDH), phosphoserine-aminotransferase (PSAT) and
phosphoserine phosphatase (PSPH). This was confirmed at the protein
level, as PHGDH was significantly increased with BA (Brameld et al.,
2015). As had been observed in the past, BA had a stronger muscle hy-
pertrophic effect than GH. The effects of ractopamine on proteolytic sys-
tems do not appear to be as potent as previous described for the
standard beta-2 agonists, such as cimaterol and clenbuterol. However,
ractopamine does appear to be mediating its effect on muscle in pigs
through biosynthetic pathways.

7. Conclusion

The consumption of meat as a protein source is predicted to increase
dramatically in the next few decades. This requirement along with the
increasing pressure of feed availabilitywill demand that animal produc-
tion systems are efficient. To achieve this it is very likely that the use of
growthpromoterswill increase, aswell as the possible use of genetically
modified organisms. The current licenced growth promoters, which
have direct effects onmuscle growth as well as fat deposition, were dis-
covered over 30 years ago. Although their effects on meat quality tend
to be negative, they do not appear, at least in pigs, to have such drastic
effects which cause a significant number of consumers to perceive
poor meat quality. However it is likely there will be an increased incen-
tive to develop new types of growthpromoters. Fast glycolytic fibres ap-
pear to be the most receptive to growth stimuli whilst slow aerobic
fibres appear to be relatively resistant to anabolic stimuli. One of the
major limitations of muscle growth is that fibre number is essentially
fixed at birth for most species, which means post-natal anabolic agents
mediate their effects via hypertrophy. One of the consequences of hy-
pertrophy is oxygen becomes less available, therefore glycolytic depen-
dent metabolism becomes more favourable. Care has to be taken to
ensure new types of growth promoters do not target mechanisms
which result in increased CSA of fast glycolytic fibres and significant de-
creases in protein degradation (proteolytic systems), as there is then
likely to be a significant decline in meat quality.
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