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Abstract: The effects of seasonal variations on the epidemiology of Trypanosoma brucei rhodesiense
disease is well documented. In particular, seasonal variations alter vector development rates and
behaviour, thereby influencing the transmission dynamics of the disease. In this paper, a mathematical
model for Trypanosoma brucei rhodesiense disease that incorporates seasonal effects is presented.
Owing to the importance of understanding the effective ways of managing the spread of the disease,
the impact of time dependent intervention strategies has been investigated. Two controls representing
human awareness campaigns and insecticides use have been incorporated into the model. The
main goal of introducing these controls is to minimize the number of infected host population at
low implementation costs. Although insecticides usage is associated with adverse effects to the
environment, in this study we have observed that by totally neglecting insecticide use, effective disease
management may present a formidable challenge. However, if human awareness is combined with low
insecticide usage then the disease can be effectively managed.
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1. Introduction

Vector-borne diseases, such as dengue virus, Zika virus, malaria, yellow fever and human African
trypanosomiais (HAT) are known to be highly sensitive to environmental changes, including
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variations in climate and land-surface characteristics [1]. Seasonal variations in climatic factors, such
as rainfall and temperature have a strong influence on the life cycle of vector thereby affecting the
distribution and abundance of vectors seasonally [2]. For example, tsetse flies-vectors responsible for
transmission of trypanosomiasis infection in humans and animals need a particular temperature
(16–38 ◦C) and humidity (50–80% of relative humidity) to survive [3]. Therefore, they are linked to
the presence of water that increases the local humidity, allowing for the growth of vegetation that
protects them from direct sunlight and wind, and attracts the animals to where tsetse feed [3–5].
Therefore, as suggested by Leak [6] understanding the relationship between these factors and vector
population dynamics is therefore a potential area for modelling and further development of existing
models.

The main goal of this study is to understand the effects of seasonal variations on the transmission
and control of Trypanosoma brucei rhodesiense. An analysis of Trypanosoma brucei rhodesiense
datasets for Uganda demonstrated that the disease has seasonal variations with incidence higher
during January, February, and March [7]. Another analysis of Trypanosoma brucei rhodesiense
datasets for Maasai Steppe ecosystem of Tanzania also revealed marked seasonal variations on
disease incidence [2, 8, 9]. Trypanosoma brucei rhodesiense is one of the two forms of Human
African trypanosomiasis (HAT) a neglected disease that affects approximately 70 million people
living in 1.55 million km2 of sub-Saharan Africa [10, 11]. Trypanosoma brucei rhodesiense is
prevalent in Eastern and Southern Africa while the other form Trypanosoma brucei gambiense is
common in West and Central Africa [3]. According the World Health Organization (WHO), in 2015,
2804 cases of HAT were recorded, with 2733 attributed to Trypanosoma brucei gambiense (90%
reduction since 1999) and 71 were attributed to Trypanosoma brucei rhodesiense (89% reduction
since 1999); this number includes cases diagnosed in both endemic and non-endemic countries [12].

Despite an ambitious campaign led by WHO, many non-governmental organizations, and a
public-private which managed to reduce HAT cases to less than 3000 in 2015 leading to the plans to
eliminate HAT as a public health problem by 2020 [10], the disease is still endemic in some parts of
sub-Saharan Africa, where it is a considerable burden on rural communities [12]. It is therefore
essential to gain a better and more comprehensive understanding of effective ways to control disease
in human and animal populations. In this study, we will evaluate the effects of optimal human
awareness and insecticides use on controlling the spread of Trypanosoma brucei rhodesiense in a
periodic environment. Effective management and control of Trypanosoma brucei rhodesiense has
been regarded as complex, since disease transmission involves domestic animals, which serve as
reservoirs for parasite transmission by the tsetse vector [10].

Mathematical models have proved to be an effective tool to investigate the long term dynamics of
several infectious diseases. Several mathematical models have been proposed to qualitatively and
quantitatively analyze the transmission and control of HAT [13–28]. Ackley et al. [16] developed a
dynamic model with the goal to estimate tsetse fly mortality from ovarian dissection data in
populations where age distribution is not essentially stable. One of the important results from their
study was that mortality increases with temperature and this result is concurs with existing field and
laboratory findings. Lord and co-workers [17] utilised a mathematical model to explore the effects of
temperature on mortality, larviposition and emergence rates in tsetse vectors. Results from the work
of Lord et al. [17] suggested that an increase in temperature maybe associated with the decline on
tsetse abundance in Zimbabwe’s Zambezi Valley. They also hypothesised that rising temperatures
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may have made some higher, cooler, parts of Zimbabwe more suitable for tsetse leading to the
emergence of new disease foci. Alderton et al. [18] proposed an agent-based model to assess the
impact of seasonal climatic drivers on trypanosomiasis transmission rates. Simulation results from the
work of Alderton et al. [18] demonstrated a perfect fit with observed HAT datasets thereby
demonstrating that seasonality is key component on trypanosomiasis transmission rates. Stone and
Chitnis [19] employed a system of ordinary differential equations (ODEs) to model to assess the
implications of heterogeneous biting exposure and animal hosts on Trypanosomiasis brucei
gambiense transmission and control. The work of Stone and Chitnis [19] had several outcomes, but
overall, their study demonstrated that effective control of HAT hinges on understanding the ecological
and environmental context of the disease, particularly for moderate and low transmission intensity
settings.

Despite these efforts, none of the aforementioned works assessed the effects of optimal human
awareness and insecticides use on long-term dynamics Trypanosoma brucei rhodesiense in a periodic
environment. Thus in this study we will develop a periodic model for Trypanosoma brucei
rhodesiense with an aim to evaluate the effects of optimal human awareness and insecticides use on
long-term dynamics of the disease. As in [13, 19, 21, 22, 28], the proposed model assumes that both
humans and animals are hosts for Trypanosoma brucei rhodesiense. Epidemiological stages of the
disease that are sensitivity to seasonal variations have been modeled by periodic functions, such
stages includes vector recruitment rate, natural mortality of vectors, vector biting rate and vector
incubation period. Mathematical analysis and optimal control are applied to study the dynamical
behavior of the model with and without optimal strategies. Overall, the results from the study
demonstrated the strength of optimal control strategies on shaping long term dynamics of the disease.
In particular, we have noted that effective control of the disease can be attained if optimal human
awareness is coupled with insecticides use (even at extremely low intensity than when it is absent).

This paper is organized as follows. In section 2, we present the methods and results. In particular,
we present periodic model for Trypanosoma brucei rhodesiense . The basic reproduction number of
the model is computed and qualitatively used to show that it is an important threshold quantity that
determines disease eradication or persistence in the community. We also extend the model to
incorporate optimal human awareness and insecticide use. The main aim of introducing controls is to
minimize the numbers of humans that are infected with disease over time at minimal costs. With the
aid of optimal control theory, necessary conditions to achieve effective disease management in the
presents of controls has been established. Finally, a brief discussion rounds up the paper in section 3.

2. Methods and results

2.1. Model formulation and boundedness of solutions

We consider a periodic ordinary differential equations model that incorporates the interplay
between the vectors (tsetse flies) and two hosts (humans and animals). The compartments used for
each population represents the epidemiological status of the species. Throughout this study, we will
use the subscript a, h and v to denote variables or parameter associated with animals, humans and
vector, respectively. Thus, each host population is subdivided into compartments of: Susceptible S i(t),
exposed Ei(t), infectious Ii(t) and temporary immune Ri(t), for i = a, h. Furthermore, the vector
population is subdivided into compartments of: Susceptible S v(t), exposed Ev(t) and infectious Iv(t).
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Thus, the total population of the hosts and vector at time t, denoted by Ni(t) (i = a, h) and Nv(t),
respectively is given by

Ni(t) = S i(t) + Ei(t) + Ii(t) + Ri(t), Nv(t) = S v(t) + Ev(t) + Iv(t).

The susceptible hosts (animals or humans) can acquire infection when they are bitten by an infectious
tsetse vector. In this model, the following forces of infection describe vector-to-host disease
transmission:

λh(t) =
σv(t)Nv(t)σh

σv(t)Nv(t) + σhNh(t)
βvh

Iv(t)
Nv(t)

, and, λa(t) =
σv(t)Nv(t)σa

σv(t)Nv(t) + σaNa(t)
βva

Iv(t)
Nv(t)

. (1)

The parameter βvi is the probability of infection from an infectious vector to a susceptible host i given
that a contact between the two occurs, σa and σh represents the maximum number of vector bites an
animal host and human host can sustain per unit time, respectively. The parameter,

σv(t) = σv0

{
1 − σv1 cos

(
2π
365

(t + τ)
)}
,

represents the frequency of feeding activity by the tsetse flies and is also known as the vector biting
rate, σv0 is the average vector biting rate, and σv1 defines the amplitude of seasonal variations (degree
of periodic forcing, 0 < σv1 < 1), τ is a phase-shifting parameter to capture the timing of seasonality.
Also note that a one year cycle has been considered, that is, ω = 2π

365 . Prior studies suggests that vector
biting depends on seasonal variations. Precisely, the vector development rates and behaviour, depends
on seasonal variations [13,29]. Furthermore, σv(t)Nv(t) denotes the total number of bites that the tsetse
vectors would like to achieve in unit time, σaNa(t) and σhNh(t) denotes the availability of hosts. The
total number of tsetse-host contacts is half the harmonic mean of σv(t)Nv(t) and σiNi(t) for i = a, h.

In addition, once infected, the susceptible host progresses to the exposed state, where they incubate
the disease for 1/κi days, (i = a, h) before they progress to the infectious stage. Infectious hosts recover
from infection with temporary immunity through treatment at rate αi, (i = a, h), which is inversely
proportional to the average duration of the infectious period. Infectious hosts that fail to recover from
infection succumb to disease-related death at rate di. It is assumed that temporary immunity wanes out
at rate γi (i = a, h) and they become susceptible to infection again. Birth and natural mortality rates
of the hosts are modelled by bi and µi, (i = a, h), respectively. We assume that there is no vertical
transmission of the disease, hence all new recruits are assumed to be susceptible.

In this study, susceptible vectors are assumed to acquire infection when they bite an infectious host
and the following force of infection accounts for disease transmission in this case:

λv(t) =
σv(t)σhNh(t)

σv(t)Nv(t) + σhNh(t)
βhv

Ih(t)
Nh(t)

+
σv(t)σaNa(t)

σv(t)Nv(t) + σaNa(t)
βva

Ia(t)
Na(t)

. (2)

The parameter βhv represents the probability of infection from an infectious human to a susceptible
vector given that a contact between the two occurs, βav is the probability that disease transmission
occurs whenever there is sufficient contact between a susceptible vector and an infectious animal. In
the absence of seasonal forcing, the forces of infection considered in this study, that is, Eqs (1) and (2),
are isomorphic to the ones proposed in [30,31]. Upon infection, the vector moves to the exposed class
and they progress to the infectious stage at rate

κv(t) = κv0[1 − κv1 cos(ωt + τ)],
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κv0 denotes the average incubation rate in the absence of seasonal variations and κv1 (0 < κv1 < 1) is the
amplitude of the seasonal variation. In addition, vector recruitment rate bv(t) and natural mortality rate
µv(t) have been assumed to follow seasonal variations with

bv(t) = bv0[1 − bv1 cos(ωt + τ)], and µv(t) = µv0[1 − µv1 cos(ωt + τ)],

where bv0, µv0 denotes the average birth and natural mortality rates, respectively, and bv1 (0 < bv1 < 1)
µv1 (0 < µv1 < 1) is the amplitude of the seasonal variation. Infectious vectors are assumed to remain
in that state for their entire lifespan.

Based on assumptions above, with all model variables and parameters assumed to be non-negative,
the following system of nonlinear ordinary differential equations summaries the dynamics of
Trypanosoma brucei rhodesiense disease:

S ′h(t) = bhNh(t) − λh(t)S h(t) − µhS h(t) + γhRh(t),
E′h(t) = λh(t)S h(t) − (µh + κh)Eh(t),
I′h(t) = κhEh(t) − (µh + αh + dh)Ih(t),
R′h(t) = αhIh(t) − (µh + γh)Rh(t),
S ′a(t) = baNa(t) − λa(t)S a(t) − µaS a(t) + γaRa(t),
E′a(t) = λa(t)S a(t) − (µa + κa)Ea(t),
I′a(t) = κaEa(t) − (µa + αa + da)Ia(t),
R′a(t) = αaIa(t) − (µa + γa)Ra(t),
S ′v(t) = bv(t)Nv(t) − λv(t)S v(t) − µv(t)S v(t),
E′v(t) = λv(t)S v(t) − (κv(t) + µv(t))Ev(t),
I′v(t) = κv(t)Ev(t) − µv(t)Iv(t),



(3)

subject to the initial values:
S h(0) = S h0 ≥ 0, Eh(0) = Eh0 ≥ 0, Ih(0) = Ih0 ≥ 0, Rh(0) = Rh0 ≥ 0,
S a(0) = S a0 ≥ 0, Ea(0) = Ea0 ≥ 0, Ia(0) = Ia0 ≥ 0, Ra(0) = Ra0 ≥ 0,
S v(0) = S v0 ≥ 0, Ev(0) = Ev0 ≥ 0, Iv(0) = Iv0 ≥ 0.

From the detailed computations in Appendix A, we conclude that the solutions (S h(t), Eh(t), Ih(t),Rh(t),
S a(t), Ea(t), Ia(t),Ra(t), S v(t), Ev(t), Iv(t)) of the model (3) are uniformly and ultimately bounded in

Ω =



S h(t) + Eh(t) + Ih(t) + Rh(t)
S a(t) + Ea(t) + Ia(t) + Ra(t)

S v(t) + Ev(t) + Iv(t)

 ∈ R11
+

∣∣∣∣∣∣∣∣∣
Nh(t) ≤ Nh0,

Na(t) ≤ Na0,

Nv(t) ≤ Nv0

 ,
with Nh(0) = Nh0, Na(0) = Na0 and Nv(0) = Nv0. Therefore we can conclude that model (3) is
epidemiologically and mathematically well-posed in the region Ω for all t ≥ 0.

2.2. Extinction and uniform persistence of the disease

In order to determine the extinction and uniform persistence of the disease we will begin by
computing the reproduction number of system (3). Often denoted by R0, the reproduction number is
an epidemiologically important threshold value which determines the ability of an infectious disease
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invading a population. It can be determined by utilizing the next-generation matrix method [32].
Based on the computations in Appendix B, the basic reproduction number of the time-averaged
autonomous system is

[R0] =
√
R0h + R0a,

where

R0h =

(
κhβvhNh0κv0βhvNv0

µv0(κv0 + µv0)(κh + µh)(µh + αh + dh)

)(
σhσv0

σv0Nv0 + σhNh0

)2

,

R0a =

(
κaβvaNa0κv0βavNv0

µv0(κv0 + µv0)(κa + µa)(µa + αa + da)

)(
σaσv0

σv0Nv0 + σaNa0

)2

.

The threshold quantities R0h and R0a represents the power of the disease to invade the human and
animal host, respectively. Due to several time-dependent parameters in model (3), a detailed derivation
of the seasonal reproduction number is presented in Appendix B. Furthermore, in Appendix B, we have
also demonstrated that the reproduction number R0 is an important threshold parameter for disease
extinction and persistence. In particular, the results show that when R0 < 1, model (3) admits a
globally asymptotically stable disease-free equilibrium and if R0 > 1, the disease persists.

2.3. The optimal control problem

2.3.1. Model formulation

There are no vaccines for HAT but there exists a couple of preventative and treatment options. The
main goal of the preventative strategies is to reduce contact between the hosts and vectors. Preventative
strategies include use of trypanocides or insecticides. In addition, humans can also minimize vector
contact by clothing on long-sleeved garments of medium-weight material with neutral colors that blend
with the background environment. Prior studies have shown that insecticides or trypanocides use can
be an effect strategy to control HAT [15]. However, it is worth noting that insecticides are expensive
and individuals in many HAT endemic areas are may not be able to afford the cost. Moreover, excessive
use of insecticides is associated with environmental adverse effects. Hence, there is need to investigate
the effects of coupling insecticides use and other disease control mechanisms on long-term disease
dynamics. In particular, a coupling in which low intensity use of insecticides would be more preferable.
Thus, in this section, we seek to evaluate the impact of optimal and cost-effective media campaigns and
insecticides use on long-term Trypanosoma brucei rhodesiense dynamics in a periodic environment.
Once humans are aware of the disease they have the potential to minimize contact between the vectors
and multiple species. In order to make this assessment, we extend model (3) to incorporate two controls
u1(t) and u2(t), that represents time dependent media campaigns and insecticides use. These control
will be assigned reasonable lower and upper bounds to reflect their limitations. Utilizing the same
variables and parameter names as before (model (3)), the extended model with controls takes the form:
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S ′h(t) = bhNh(t) − λh(t)S h(t) − µhS h(t) − u1(t)S h(t) + γhRh(t),
E′h(t) = λh(t)S h(t) − (µh + κh)Eh(t),
I′h(t) = κhEh(t) − (µh + αh + dh)Ih(t),
R′h(t) = u1(t)S h(t) + αhIh(t) − (µh + γh)Rh(t),
S ′a(t) = baNa(t) − λa(t)S a(t) − µaS a(t) + γaRa(t),
E′a(t) = λa(t)S a(t) − (µa + κa)Ea(t),
I′a(t) = κaEa(t) − (µa + αa + da)Ia(t),
R′a(t) = αaIa(t) − (µa + γa)Ra(t),
S ′v(t) = bv(t)Nv(t) − λv(t)S v(t) − (µv(t) + u2(t))S v(t),
E′v(t) = λv(t)S v(t) − (κv(t) + µv(t) + u2(t)))Ev(t),
I′v(t) = κv(t)Ev(t) − (µv(t) + u2(t))Iv(t),



(4)

subject to the initial values:
S h(0) = S h0 ≥ 0, Eh(0) = Eh0 ≥ 0, Ih(0) = Ih0 ≥ 0, Rh(0) = Rh0 ≥ 0,
S a(0) = S a0 ≥ 0, Ea(0) = Ea0 ≥ 0, Ia(0) = Ia0 ≥ 0, Ra(0) = Ra0 ≥ 0,
S v(0) = S v0 ≥ 0, Ev(0) = Ev0 ≥ 0, Iv(0) = Iv0 ≥ 0.

Observe that in system (4), it is assumed that humans who become aware of the disease have
negligible chances of acquiring the infection, and also insecticide use affects all the epidemiological
classes of the vector populations. Further more, we assume that ui(t) ranges between 0 and qi, that is
0 ≤ ui(t) ≤ qi < 1, such that ui = 0 reflects the absence of time dependent controls and qi represents
the upper bound of the control. The control set is

U =

{
(u1, u2)| ∈ (L∞(0, t f )) : 0 ≤ ui ≤ qi < 1, qi ∈ R

+, i = 1, 2.
}
.

In developing response plans for effective management of diseases, policy makers seek optimal
responses that can minimize the incidence and/or disease-related mortality rate while considering the
cost of each mitigation strategy. Here, our goal is to minimize the number of infectious host( humans
and animals) at minimal costs associated with strategy implementation. Thus the objective functional
is given by

J(u1(t), u2(t)) =

∫ t f

0

(
C1Ih(t) + C2Ia(t) +

W1

2
u2

1(t) +
W2

2
u2

2(t)
)

dt, (5)

subject to the constraints of the ODEs in system (4) and where C1, C2, W1 and W2 are positive constants
also known as the balancing coefficients and their goal is to transfer the integral into monetary quantity
over a finite time interval [0, t f ]. In (5) control efforts are assumed to be nonlinear-quadratic, since a
quadratic structure in the control has mathematical advantages such as: If the control set is a compact
and convex it follows that the Hamiltonian attains its minimum over the control set at a unique point.
The basic framework of an optimal control problem is to prove the existence of an optimal control
and then characterize it. Pontryagin’s Maximum Principle is used to establish necessary conditions
that must be satisfied by an optimal control solution [33]. Derivations on the existence of an optimal
control pair as well as the necessary conditions that must be satisfied by optimal control solutions of
system (4) are shown in Appendix C.
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2.3.2. Numerical results and discussion

In this section, we present some numerical results of the proposed optimal control problem,
(system(4)). The numerical solutions were obtained after solving the optimality system of eleven
ordinary differential equations from the state and costate equations. The technique used is commonly
known as the forward-backward sweep iterative method [34]. The first step of the forward-backward
sweep method entails solving of the state equations with a guess for the controls over the simulated
time using fourth-order Runge-Kutta scheme. “The controls are then updated by using a convex
combination of the previous controls and the value from the characterizations of the controls. This
process is repeated and iterations are ceased if the values of the unknowns at the previous iterations
are very close to the ones at the present iterations” [34]. Table 1, below presents the essential steps
carried out, for a detailed discussion we refer the reader to [34].

Table 1. Forward-backward sweep iterative method.

Algorithm
1. Subdivide the time interval [t0, t f ] into N equal subintervals. Set the state variable at different times
as x = x(t) and assume a piecewise-constant control u(0)

j (t), t ∈ [tk, tk+1], where k = 0, 1, 2, ...,N − 1
and j = 1, 2.

2. Apply the assumed control u(0)
j (t) to integrate the state system with an initial condition x(t0) = x(0),

forward in time [t0, t f ] using the fourth-order Runge-Kutta method, where x0 = (S h(0), Eh(0), Ih(0),
Rh(0), S a(0), Ea(0), Ia(0),Ra(0), S v(0), Ev(0), Iv(0)).

3. Apply the assumed control u(0)
j (t) to integrate the costate system with the transversality condition

~λ(t f ) = λi(t f ), i = 1, 2, 3, ..., 11, backward in time [t0, t f ] using the fourth-order Runge-Kutta method.
4. Update the control by entering the new state and costate solutions ~x(t) and ~λ(t f ), respectively,
through the characterization Eq (16) (see, Appendix C).

5. STOP the algorithm if
‖~xi+1 − ~xi‖

‖~xi+1‖
< ξ; otherwise update the control using a convex combination of

the current and previous control and GO to step 2. Here, ~xi is the ith iterative solution of the state
system and ξ is an arbitrarily small positive quantity (Tolerance level).

On simulating system (4) we assumed the following initial population levels: S h = 10000, Eh = 0,
Ih = 500, Rh = 0, S a = 5000, Ea = 0, Ia = 350, Ra = 0, S v = 20000, Ev = 0, Iv = 1000. Furthermore,
the weight constants W1 and W2 are varied. In the simulations we assume that C2 = 2C1 (with C1

fixed to unity), that is, minimization of the infected humans has more importance/weight compare to
that of infected animals. Furthermore, the rest of the parameter values used were taken from Table 2,
majority of parameters values were adopted from the work of Moore et al. [13] as well as Ndondo et
al. [22], while a few were assumed within realistic ranges due to their unavailability.

The total number of new infections in human and cattle population were determined by the
following formulas, respectively

Th =

∫ t f
(

σv(t)Nvσh

σv(t)Nv + σhNh
βvh

Iv

Nv
S h

)
dt,
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Ta =

∫ t f
(

σv(t)Nvσa

σv(t)Nv + σaNa
βva

Iv

Nv
S a

)
dt.

and the total cost associated with infected animals, infected humans and the controls J, which is given
by (5).

Table 2. Description of model parameters of system (3), indicating baseline, ranges and
references.

Symbol Description

ba, bh Birth rate for the hosts 1
15×365 , 1

50×365 Day−1 [22]
bv0 Averaged birth rate of the vectors 1

33 Day−1 [22]
µv0 Averaged mortality rate of the vectors 1

33 Day−1 [22]
µa, µh Natural mortality rate for the hosts 1

15×365 , 1
50×365 Day−1 [22]

da, dh Disease-induced death rate for the hosts 0.0008, 1
108 Day−1 [13]

κv0 Average incubation rate for the vectors 1
25 ( 1

25 −
1

30 ) Day−1 [22]
κa, κh Incubation rate for the hosts 1

12 ( 1
10 −

1
14 ) Day−1 [22]

σv0 Average vector biting rate 1
4 ( 1

10 −
1
3 ) Day−1 [22]

σv1 Amplitude of oscillations in σv(t), respectively 0.8 Dimensionless
bv1 Amplitude of oscillations in bv(t), respectively 0.8 Dimensionless
µv1 Amplitude of oscillations in µv(t), respectively 0.8 Dimensionless
κv1 Amplitude of oscillations in κv(t), respectively 0.8 Dimensionless
τ Phase-shifting parameter 50 Days
σa, σh The maximum number of vector bites the host

can have per unit time. This is a function of the
host’s exposed surface area and any vector control
interventions used by the host
to reduce exposure to tsetse vectors. 0.62, 0.7 Day−1 [22]

αa, αh Recovery rate of the infectious host 1
25 ,

1
30 Day−1 [22]

γa, γh Immunity waning rate for the recovered host 1
75 ,

1
90 Day−1 [22]

βva, βvh Probability of infection from an infectious vector to
a susceptible host given that a contact between the
two occurs 0.62 [22]

βav, βhv Probability that a vector becomes infected after biting
an infectious animal, human 0.01 [22]

Simulation results in Figure 1 illustrates Trypanosoma brucei rhodesiense dynamics in the host
and vector population, in the presence human awareness only, that is 0 ≤ u1(t) ≤ 0.003 and u2(t) = 0.
Overall, we can note that in the presence of optimal human awareness, the numbers of infected hosts
and vectors is low compared to without optimal control. Furthermore, with optimal control, the
numbers of infected host and vector converges to the disease-free equilibrium in a short time than
when there is no optimal control. In addition, we noted that, the total number of infected human and

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2530–2556.



2539

animal without control over a 2000 day period is Th = 4, 535 and Ta = 2, 471, respectively, while in
the presence of optimal human awareness campaigns only, the total number of infected human and
animal population for the same period is Th = 2, 985 and Ta = 1, 9039, respectively and the associated
total costs of implementing the strategy is J = 14, 994. Based on these results, one can conclude that
the presence of optimal human awareness leads to reduction on cumulative infections for the human
and animal host by Th = 1, 550 and Ta = 567, respectively. Comparing the infection reduction relative
to the total number of infections recorded in without optimal control, it follows that, there is a 34.2%
and 22.9% reduction in human and animal population, respectively. Figure 2 illustrates the control
profile of u1(t), (note that u2(t) = 0). We can see that, the control profile starts at its maxima and
remains there for the entire time horizon. It gradually drops to its minima at the final horizon. This
signifies that to attain the above results control u1(t) may need to be maintained at its maximum
intensity for almost the entire time horizon.

Numerical results in Figure 3, illustrates the effects of combining optimal human awareness and
insecticides use on long term Trypanosoma brucei rhodesiense dynamics in a periodic environment
over 2000 days (we set 0 ≤ u1(t) ≤ 0.003 and 0 ≤ u1(t) ≤ 0.001, with W1 = 0.1 and W2 = 100). Once
again we can observe that with optimal control strategies in place, few infections will be recorded
compared to when there are no optimal control strategies. Precisely, with optimal control strategies in
place, the total number of new infections over 2000 days is Th = 2, 368 and Ta = 1, 741, for human
and animal populations, respectively, and the associated costs of implementation is J = 19, 264. We
have also noted that without optimal control strategies, the total number of new infections for the
human and animal host over 2000 days is 5, 336 and 2, 703 respectively. It follows that the optimal
control strategies associated would have averted 2, 368 and 962 infections in human and animal
populations. This represents approximately 44% and 36% reduction of infections in human and
animal populations, in relation to when there are no controls. Comparing the results in
Figures 1 and 3, we can note that combining optimal human awareness and insecticides use, leads to
effective disease management in a short period (convergence of solutions to the disease-free
equilibrium in Figure 3 takes less time than in Figure 1) compared to when there is optimal human
awareness alone.

Simulation results in Figure 4 depicts the control profiles for u1(t) and u2(t) over 2000 days. We
can observe that all the control profiles starts at their respective maximums and remain there for the
greater part of the time horizon, in particular, the control profile for u1(t) drops on the final time while
that of u2(t) drops just before the final time. These results suggests that for this scenario both controls
can be maintained at their respective maximum intensities in order to effectively manage the spread of
the disease.

In Figure 5, we varied the bounds of the controls; human awareness u1(t) and insecticides use u2(t).
We set we set 0 ≤ u1(t) ≤ 0.03 and 0 ≤ u1(t) ≤ 0.01, with W1 = 0.1 and W2 = 1000. We assumed u2(t)
will be significantly affected by changes on the bounds of the controls compared to u1(t), hence, we
adjusted W2 from 100 to 1000 while W1 remains 0.1. Under this scenario, we noted that the total
number of new infections generated in human and animal populations in the presence of controls over
2000 days will be Th = 482 and Ta = 544, respectively, implying that optimal control strategies will
be responsible for averting approximately 4, 053 and 1, 927 infections in human and animal
populations, respectively. Thus, relative to the total number of infections in the absence of controls,
the presence of controls will be associated with 89.4% and 78% reductions for human and animal
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populations, respectively. Comparing with earlier scenarios (Figures 1 and 3), we can see that this
scenario will have more impact on disease management. In addition, the control profiles associated
with this scenario (Figure 6) suggests that for these results to be attained, control u1(t) will have to be
maintained at its maximum intensity from the start to the final day, while control u2(t) can be
maintained at maximum intensity from the start and can be ceased immediately after 500 th day of
implementation. Thus at higher costs and intensity, control u2(t) cannot be maintained at its maximum
intensity from the start till the final day. In addition, the total cost of implementation under this
scenario will be J = 32, 559.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Simulations of model (4) with and without optimal control, with
0 ≤ u1(t) ≤ 0.003 and u2(t) = 0, W1 = 0.1 and W2 = 0. The solid and dotted curves
in (a)–( f ) depicts the population levels in the host populations with and without optimal
control, respectively. Overall, we can observe that with optimal control strategies, the total
number of new infections for the hosts is low compared to when there are no optimal control
strategies.
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Figure 2. Control profile for u1(t), (0 ≤ u1(t) ≤ 0.03), u2(t) = 0 and w1 = 0.1. We can see
that for effective disease management, control u1(t) will have to be maintained at its maxima
for the entire time horizon.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Simulations of model (4) with and without optimal human awareness and
insecticides use over 2000 days. We set 0 ≤ u1(t) ≤ 0.003, 0 ≤ u2(t) ≤ 0.001, W1 = 0.1 and
W2 = 100. We assume that insecticides use is more expensive relative to human awareness
campaigns, hence W1 < W2. The solid and dotted curves in (a)–( f ) represent the population
levels in the host populations with and without optimal control, respectively.
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(a) (b)

Figure 4. Numerical results illustrating the control profiles for u1(t), (0 ≤ u1(t) ≤ 0.003) and
u2(t) (0 ≤ u2(t) ≤ 0.001), with W1 = 0.1 and W2 = 100. The results suggests that for effective
disease management both controls need to be maintained at their respective maxima for the
entire time horizon.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Simulations of model (4) with and without optimal human awareness and
insecticides use over 2000 days. We set 0 ≤ u1(t) ≤ 0.03, 0 ≤ u2(t) ≤ 0.01, W1 = 0.1
and W2 = 1000. Once again, we assume that insecticides use is more expensive compared
to human awareness campaigns, hence W1 < W2. The solid and dotted curves in (a)–( f )
represent the population levels in the host populations with and without optimal control,
respectively.
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(a) (b)

Figure 6. Numerical results illustrating the control profiles for u1(t), (0 ≤ u1(t) ≤ 0.03) and
u2(t) (0 ≤ u2(t) ≤ 0.01), with W1 = 0.1 and W2 = 103. The results suggests that for these
weight constants, the human awareness control u1(t) will have to maintained at its maxima
from the start till the end and the insecticide control, u2(t) need to be implemented at its
maxima from the start and can be ceased immediately after 500 days.

3. Discussion and concluding remarks

In this study, a periodic model consisting of two hosts (animals and humans) and the tsetse vector
has been proposed and comprehensively analysed with a view to explore the impact of optimal human
awareness and insecticides use on transimission and control of Trypanosoma brucei rhodesiense in a
periodic environment. We computed the basic reproduction number and demonstrated that it is an
important threshold quantity for disease persistence and extinction. In particular, we have
demonstrated that whenever the basic reproduction number is less than unity then the disease dies out
and the reverse occurs whenever it is greater than unity. The main goal of introducing the two controls
in the proposed model was necessitated by the desire to identify effective ways of minimizing the
number of infected human over time at minimal costs. Hence utilizing optimal control theory several
possible outcomes of effectively managing the disease were explored. One of the important outcome
from this study was that effective control of the disease can be managed if optimal human awareness
campaigns are combined with optimal insecticides use. This result was attained after comparing the
strength of optimal human awareness alone and when it is combined with optimal insecticides use.
We also made this comparison based on the fact that insecticides use is known to be associated with
some adverse effects to the environment. Therefore, this study suggests that by totally eliminating
insecticides use from a whole matrix of other Trypanosoma brucei rhodesiense intervention strategies
may present a formidable challenge on effective disease management. We have also noted that at
certain implementation costs, effective management can be attained with low intensity use of
insecticides for a shorter period of time.

The proposed model is not exhaustive. In future, we will incorporate the effects of host movement,
which is one of the integral factors in transmission and control of Trypanosoma brucei rhodesiense.
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Supplementary

Appendix A. Positivity and boundedness of solutions

Theorem 1. The solutions (S h(t), Eh(t), Ih(t),Rh(t), S a(t), Ea(t), Ia(t),Ra(t), S v(t), Ev(t), Iv(t)) of the
model (3) are uniformly and ultimately bounded in

Ω =



S h(t) + Eh(t) + Ih(t) + Rh(t)
S a(t) + Ea(t) + Ia(t) + Ra(t)

S v(t) + Ev(t) + Iv(t)

 ∈ R11
+

∣∣∣∣∣∣∣∣∣
Nh(t) ≤ Nh0,

Na(t) ≤ Na0,

Nv(t) ≤ Nv0

 ,
with Nh(0) = Nh0, Na(0) = Na0 and Nv(0) = Nv0.

Proof. For the Trypanosoma brucei rhodesiense model (3) to be epidemiologically meaningful, it is
important to demonstrate that all its state variables are non-negative for all t ≥ 0. In other words, one
needs to show that solutions of system (3) with non-negative initial data will remain non-negative for
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all t ≥ 0. Let the initial data S i(0) ≥ 0, Ei(0) ≥ 0, Ii(0) ≥ 0, Ri(0) ≥ 0, for i = a, h, and S v(0) ≥ 0,
Ev(0) ≥ 0, and Iv(0) ≥ 0, such that from the second equation of model (3) we have

Eh(t) = e−(µh+κh)t
(
Eh(0) +

∫ t

0
λh(s)S h(s)ds

)
, t ≥ 0.

Thus, Eh(t) ≥ 0 for all t ≥ 0. A similar approach can be utilised to show that all the other variables of
model (3) are positive for all t ≥ 0. In what follows, we now determine the feasible region of model (3).
One can easily verify the that rate of change of the total host populations Ni, (i = a, h) is

N′i (t) = (bi − µi)Ni(t) − diIi(t) ≤ (bi − µi)Ni(t), where µi ≤ bi.

As suggested in [13] we set bi = µi, otherwise the population will grow without bound or become
extinct. Therefore, Ni(t) ≤ Ni(0). Similarly, by adding all the last three equations of model (3), and
setting bv(t) = µv(t) as in [13], one gets N(t) ≤ Nv0. Thus, model (3) is epidemiologically and
mathematically well-posed in the domain:

Ω =



S h(t) + Eh(t) + Ih(t) + Rh(t)
S a(t) + Ea(t) + Ia(t) + Ra(t)

S v(t) + Ev(t) + Iv(t)

 ∈ R11
+

∣∣∣∣∣∣∣∣∣
Nh(t) ≤ Nh0,

Na(t) ≤ Na0,

Nv(t) ≤ Nv0

 ,
with Nh(0) = Nh0, Na(0) = Na0 and Nv(0) = Nv0. This completes the proof of theorem. �

Appendix B. Extinction and uniform persistence of the disease

Before we investigate the extinction and persistence of the disease, we need to determine the basic
reproduction number of the model. Commonly denoted by R0, the basic reproduction number is an
epidemiologically important threshold value which determines the ability of an infectious disease
invading a population. To determine the reproduction number of model (3), the next-generation
matrix method [32] will be utilized. One can easily verify that model (3) has a disease-free
equilibrium E0 : (S 0

h, E
0
h, I

0
h ,R

0
h, S

0
a, E

0
a, I

0
a ,R

0
a, S

0
v , E

0
v , I

0
v ) = (Nh0, 0, 0, 0, 0,Na0, 0, 0, 0,Nv0, 0, 0).

The infected compartments of model (3) is comprised of (E j(t), I j(t)) classes, for j = h, a, v.
Following the next-generation matrix approach, the nonnegative matrix F(t) of the infection terms
and the non-singular matrix, V(t) of the transition terms evaluated at E0 are,

F(t) =



0 0 0 0 0
σv(t)σhβvhNh0

σv(t)Nv(t) + σhNh0
0 0 0 0 0 0

0 0 0 0 0
σv(t)σaβvaNa0

σv(t)Nv(t) + σaNa0
0 0 0 0 0 0

0
σhσv(t)βhvNv(t)

σv(t)Nv(t) + σhNh0
0

σaσv(t)βvaNv(t)
σv(t)Nv(t) + σaNa0

0 0

0 0 0 0 0 0


,
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and

V(t) =



κh + µh 0 0 0 0 0
−κh µh + αh + dh 0 0 0 0
0 0 κa + µa 0 0 0
0 0 −κa µa + αa + da 0 0
0 0 0 0 κv(t) + µv(t) 0
0 0 0 0 −κv(t) µv(t)


. (6)

Therefore, the basic reproduction number of the time-averaged autonomous system is

[R0] =
√
R0h + R0a,

where

R0h =

(
κhβvhNh0κv0βhvNv0

µv0(κv0 + µv0)(κh + µh)(µh + αh + dh)

)(
σhσv0

σv0Nv0 + σhNh0

)2

,

R0a =

(
κaβvaNa0κv0βavNv0

µv0(κv0 + µv0)(κa + µa)(µa + αa + da)

)(
σaσv0

σv0Nv0 + σaNa0

)2

.

In order to define the basic reproduction number of this non-autonomous model, we follow the work
of Wang and Zhao [35]. They introduced the next-infection operator L for a model in periodic
environments by

(Lφ)(t) =

∫ ∞

0
Y(t, t − s)F(t − s)φ(t − s)ds ,

where Y(t, s), t ≥ s, is the evolution operator of the linear ω-periodic system dy
dt = −V(t)y and φ(t), the

initial distribution of infectious animals, is ω-periodic and always positive. The effective reproductive
number for a periodic model is then determined by calculating the spectral radius of the next infection
operator,

R0 = ρ(L). (7)

For model (3), the evolution operator can be determined by solving the system of differential equations
dy
dt = −V(t)y with the initial condition Y(s, s) = I6×6; thus, one gets

Y(t, s) =



y11(t, s) 0 0 0 0 0
y21(t, s) y22(t, s) 0 0 0 0

0 0 y33(t, s) 0 0 0
0 0 y43(t, s) y44(t, s) 0 0
0 0 0 0 y55(t, s) 0
0 0 0 0 y65(t, s) e−µv(t − s)


.

where

y11(t, s) = e−(µh + κh)(t − s),
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y21(t, s) =
κh

dh + αh − κh

(
e−(µh + κh)(t − s) − e−(µh + dh + αh)(t − s)

)
,

y22(t, s) = e−(µh + dh + αh)(t − s),
y33(t, s) = e−(µa + γa)(t − s),

y43(t, s) =
κa

da + αa − κa

(
e−(µa + γa)(t − s) − e−(µa + da + αa)(t − s)

)
,

y44(t, s) = e−(µa + da + αa)(t − s),

y55(t, s) = exp−
{
κvo(t − s) +

2κv0κv1

ω
cos

(
ω

2
(t + τ + s)

)
sin

(
ω

2
(t + τ − s)

)
+µvo(t − s) +

2µv0µv1

ω
cos

(
ω

2
(t + τ + s)

)
sin

(
ω

2
(t − s)

)}
,

y65(t, s) =

(
e−

∫
µv(t)dt

) ∫ t

s
eµv(x)κv(x)y55(x, s)dx,

y66(t, s) = exp−
{
µvo(t − s) +

2µv0µv1

ω
cos

(
ω

2
(t + τ + s)

)
sin

(
ω

2
(t + τ − s)

)}
.

Utilising the techniques described in [36] one can numerically analyse the basic reproduction number
defined in Eq (7). The following lemma shows that the basic reproduction number R0 is the threshold
parameter for local stability of the disease-free equilibrium E0.

Lemma 1. (Theorem 2.2 in Wang and Zhao [35]). Let x(t) = (Ei(t), Ii(t)), i = a, h, v, denote the
vector of all infected class variables system (3), such that the linearization of system (3) at disease-free
equilibrium E0 is

ẋ(t) = (F(t) − V(t))x(t), (8)

where F(t) and V(t) are defined earlier on Eq (6). Furthermore, let ΦF−V(t) and ρ(ΦF−V(ω) be the
monodromy matrix of system (8) and the spectral radius of ΦF−V(t)(ω), respectively, then the following
statements are valid:

(i) R0 = 1, if and only if ρ(ΦF−V(ω)) = 1;

(ii) R0 > 1, if and only if ρ(ΦF−V(ω)) > 1;

(iii) R0 < 1, if and only if ρ(ΦF−V(ω)) < 1.
Thus, the disease-free equilibrium E0 of system (3) is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

In what follows, we now demonstrate that the reproduction number R0 is an important threshold
parameter for disease extinction and persistence. Precisely, we will show that when R0 < 1, model (3)
admits a globally asymptotically stable disease-free equilibrium E0, and if R0 > 1, the disease persists.
The mathematical analysis follows the approach in [37].

Theorem 2. If R0 < 1, then the disease-free equilibrium E0 of system (3) is globally asymptotically
stable in Ω .
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Proof. According to Lemma 1, if R0 < 1, then the disease-free equilibrium E0 of system (3) is locally
asymptotically stable. Hence, it is sufficient to demonstrate that forR0 < 1, the disease-free equilibrium
is the global attractor. Assume that R0 < 1, again from Lemma 1, we have, we have ρ(ΦF−V(ω)) < 1.
From the second, third, sixth, seventh, tenth and eleventh equations of model (3) we have:

Ėh(t) ≤
(

σv(t)σhβvhIv

σv(t)Nv(t) + σhNh

)
S 0

h − (µh + κh)Eh,

İh(t) = κhEh − (µh + dh + αh)Ih,

Ėa(t) ≤
(

σv(t)σaβvaIv

σv(t)Nv(t) + σaNa

)
S 0

a − (µa + κa)Ea,

İa(t) = κaEa − (µa + da + αa)Ia,

Ėv(t) ≤
(

σv(t)σhβhvIh

σv(t)Nv(t) + σhNh
+

σv(t)σaβvaIa

σv(t)Nv(t) + σaNa

)
S 0

v − (κv(t) + µv(t))Ev,

İv(t) = κv(t)Ev − µv(t)Iv,

for t ≥ 0. Consider the following auxiliary system:

˙̃Eh(t) =

 σv(t)σhβvh Ĩv

σv(t)Ñv + σhÑh

 S 0
h − (µh + κh)Ẽh,

˙̃Ih(t) = κhẼh − (µh + dh + αh)Ĩh,

˙̃Ea(t) =

 σv(t)σaβva Ĩv

σvÑv + σaÑa

 S 0
a − (µa + κa)Ẽa,

˙̃Ia(t) = κaẼa(t) − (µa + da + αa)Ĩa(t),
˙̃Ev(t) =

 σv(t)σhβhv Ĩh

σv(t)Ñv(t) + σhÑh

+
σv(t)σaβva Ĩa

σv(t)Ñv(t) + σaÑa

 S 0
v − (κv(t) + µv(t))Ẽv,

˙̃Iv(t) = κv(t)Ẽv − µv(t)Ĩv.

By Lemma 1 and the standard comparison principle, there exist a positive ω−periodic function x̃(t)
such that x(t) ≤ x̃(t)ept, where x̃(t) = (Ẽi(t), Ĩi(t))T, for i = a, h, v, and p = 1

ω
ln ρ

(
Φ(F−V)(·)(ω)

)
< 0.

Thus we conclude that x(t)→ 0 as t → ∞, that is,

lim
t→∞

Ei(t) = 0, lim
t→∞

Ii(t) = 0, lim
t→∞

Ra(t) = 0, and lim
t→∞

Rh(t) = 0, i = a, h, v.

Hence it follows that

lim
t→∞

S i(t) = S 0
i , and lim

t→∞
Nh(t) = N0

i , i = a, h, v.

Therefore, the disease-free equilibrium E0 of system (3) is globally asymptotically stable. �

Theorem 3. If R0 > 1, then system (3) is uniformly persistent, i.e., there exists a positive constant
η, such that for all initial values of (S i(0), Ei(0), Ii(0),Rk(0))R5

+ × Int(R+)6, (i = a, h, v, k = a, h) the
solution of model (3) satisfies:

lim inf
t→∞

S i(t) ≥ η, lim inf
t→∞

Ei(t) ≥ η, lim inf
t→∞

Ii(t) ≥ η, lim inf
t→∞

Rk(t) ≥ η.
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Proof. Let us define

X = R11
+ ; X0 = R5

+ × Int(R+)6; ∂X0 = X\X0.

Let P : X −→ X be the Poincaré map associated with our model (3) such that P(x0) = u(ω, x0) ∀x0 ∈ X
, where u(t, x0) denotes the unique solution of the system with u(0, x0) = x0.

We begin by demonstrating that P is uniformly persistent with respect to (X0, ∂X0). One can easily
deduce that from model (3), X and X0 are positively invariant. Moreover, ∂X0 is a relatively closed set
in X. It follows from Theorem 1 that solutions of model (3) uniformly and ultimately bounded. Thus
the semiflow P is point dissipative on R11

+ , and P : R11
+ → R

11
+ is compact. By Theorem 3.4.8 in [38], it

then follows that P admits a global attractor, which attracts every bounded set in R11
+ .

Define

M∂ = {(S i(0), Ei(0), Ii(0),Rk(0)) ∈ ∂X0 : Pm(S i(0), Ei(0), Ii(0),Rk(0)) ∈ ∂X0, ∀m ≥ 0},

for i = a, h, v, k = a, h.
Next, we claim that M∂ = {(S h(0), 0, 0,Rh(0), S a(0), 0, 0,Ra(0), S v(0), 0, 0) : S i ≥ 0,Rk ≥ 0}. Clearly,
M̃ = {(S h(0), 0, 0,Rh(0), S a(0), 0, 0,Ra(0), S v(0), 0, 0) : S i ≥ 0,Rk ≥ 0} ⊆ M∂.

Now, for any (S i(0), Ei(0), Ii(0),Rk(0)) ∈ ∂X0\M; if Eh(0) = Ih(0) = 0, it follows that S i(0) > 0,
Rh(0) > 0, Ea(0) > 0, Ia(0) > 0, Ra(0) > 0, Ev(0) > 0, Iv(0) > 0, Ėh(0) = λh(0)S h(0) > 0, and
İh(0) = 0. If Ea(0) = Ia(0) = 0, it follows that S i(0) > 0, Eh(0) > 0, Ih(0) > 0, Rh(0) > 0, Ra(0) = 0,
Ev(0) > 0, Iv(0) > 0, Ėa(0) = λa(0)S a(0) > 0, and İa(0) = 0. If Ev(0) = Iv(0) = 0, it follows that
S i(0) > 0, Eh(0) = 0, Ih(0) = 0, Rh(0) > 0, Ea(0) = 0, Ia(0) = 0, Ra(0) = 0, Ėv(0) = 0, and İa(0) = 0.
Thus, we have (S i(0), Ei(0), Ii(0),Rk(0)) < ∂X0 for 0 < t � 1. By the positive invariance of X0, we
know that Pm(S i(0), Ei(0), Ii(0),Rk(0)) < ∂X0 for m ≥ 1, hence (S i(0), Ei(0), Ii(0),Rk(0)) < M∂, and
thus M∂ = {(S h(0), 0, 0,Rh(0), S a(0), 0, 0,Ra(0), S v(0), 0, 0) : S i ≥ 0,Rk ≥ 0}.

Now consider the fixed point M0 = (S 0
h, 0, 0,R

0
h, S

0
a, 0, 0, 0, S

0
v , 0, 0) of the Poincaré map P, where and

define WS (M0) = {x0 : Pm(x0)→ M0,m→ ∞}. We show that

WS (M0) ∩ X0 = ∅. (9)

Based on the continuity of solutions with respect to the initial conditions, for any ε > 0, there exists
δ > 0 small enough such that for all (S i(0), Ei(0), Ii(0),Rk(0)) ∈ X0 with ||(S i(0), Ei(0), Ii(0),Rk(0)) −
M0|| ≤ δ, we have

||u(t, (S i(0), Ei(0), Ii(0),Rk(0)) − u(t,M0)|| < ε , ∀t ∈ [0, ω].

To obtain (9), we claim that

lim sup
m→∞

||Pm(S i(0), Ei(0), Ii(0),Rk(0)) − M0|| ≥ δ, ∀(S i(0), Ei(0), Ii(0),Rk(0)) ∈ X0.

We prove this claim by contradiction; that is, we suppose
lim sup

m→∞
||Pm(S i(0), Ei(0), Ii(0),Rk(0)) − M0|| < δ for some (S i(0), Ei(0), Ii(0),Rk(0)) ∈ X0. Without loss

of generality, we assume that ||Pm(S i(0), Ei(0), Ii(0),Rk(0)) − M0|| < δ, ∀m ≥ 0. Thus,

||u(t, Pm(S i(0), Ei(0), Ii(0),Rk(0)) − u(t,M0)|| < ε, ∀t ∈ [0, ω] and m ≥ 0.
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Moreover, for any t ≥ 0, we write t = t0 + qω with t0 ∈ [0, ω) and q = [ t
ω

], the greatest integer less than

or equal to
t
ω

. Then we obtain

||u(t, (S i(0), Ei(0), Ii(0),Rk(0)) − u(t,M0)|| = ||u(t0, Pm(S i(0), Ei(0), Ii(0),Rk(0)) − u(t0,M0)|| < ε

for any t ≥ 0. Let (S i(t), Ei(t), Ii(t),Rk(t)) = u(t, (S i(0), Ei(0), Ii(0),Rk(0)). It follows that Ni0 − ε <

S i(t) < Ni0 + ε, 0 < Ei(t) < ε, 0 < Ii(t) < ε, and 0 < Rk(t) < ε. Then from the second equation of
system (3) we have

dEh

dt
=

σv(t)σhβvhIvS h

σv(t)Nv + σhNh
− (µh + κh)Eh,

≥
σv(t)σhβvhIv(Nh0 − ε)

σv(t)(Nv0 + ε) + σh(Nh0 + ε)
− (µh + κh)Eh,

=

(
σv(t)σhβvhNh0

σv(t)Nv0 + σhNh0

) 1 − 2εσh

(
1 +

σv(t)
2σh

+
σv(t)Nv0
2σhNh0

)
σv(t) (Nv0 + ε) + σh (Nh0 + ε)

 Iv − (µh + κh)Eh,

Recall that the third equation of system (3) has the form

İh(t) = κhEh(t) − (µh + αh + dh)Ih.

From the sixth equation of system (3) we have

dEa

dt
≥

σv(t)σaβvaIv(Na0 − ε)
σv(t)(Nv0 + ε) + σh(Na0 + ε)

− (µa + κa)Ea,

=

(
σv(t)σaβvaNa0

σvNv0 + σaNa0

) 1 − 2εσa

(
1 +

σv(t)
2σa

+
σv(t)Nv0
2σaNa0

)
σv(t) (Nv0 + ε) + σa (Na0 + ε)

 Iv − (µa + κa)Ea,

The seventh equation of system (3) has the form

İa(t) = κaEa − (µa + αa + da)Ia.

The ninth equation of system (3) satisfies

dEv

dt
≥

σv(t)σhβhvIh(Nv0 − ε)
σv(t)(Nv0 + ε) + σh(Nh0 + ε)

+
σv(t)σaβavIa(Nv0 − ε)

σv(t)(Nv0 + ε) + σa(Na0 + ε)
− (µv(t) + κv(t))Ev,

= +

(
σv(t)σhβhvNv0

σv(t)Nv0 + σhNh0

) 1 − 2εσv(t)
(
1 + σh

2σv(t) + σhNh0
2σv(t)Nv0

)
σv(t) (Nv0 + ε) + σh (Nh0 + ε)

 Ih

+

(
σv(t)σaβavNv0

σv(t)Nv0 + σaNa0

) 1 − 2εσv(t)
(
1 + σa

2σv(t) + σaNa0
2σv(t)Nv0

)
σv(t)

(
Λv
µv(t) + ε

)
+ σa (Na0 + ε)

 Ia − (µv(t) + κv(t))Ev(t).

Recall that the tenth equation of system (3) has the form

İv(t) = κv(t)Ev − µv(t)Iv.
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Let

Mε =



0 0 0 0 0
2εσh

(
1+

σv(t)
2σh

+
σv(t)Nv0
2σhNh0

)
σv(t)(Nv0+ε)+σh(Nh0+ε)

0 0 0 0 0 0

0 0 0 0 0
2εσa

(
1+

σv(t)
2σa

+
σv(t)Nv0
2σaNa0

)
σv(t)(Nv0+ε)+σa(Na0+ε)

0 0 0 0 0 0

0
2εσv(t)

(
1+

σh
2σv(t) +

σhNh0
2σv(t)Nv0

)
σv(t)(Nv0+ε)+σh(Nh0+ε) 0

2εσv(t)
(
1+

σa
2σv(t) +

σaNa0
2σv(t)Nv0

)
σv(t)

(
Λv
µv(t) +ε

)
+σa(Na0+ε)

0 0

0 0 0 0 0 0


,

such that

[Ėh, İh, Ėa, İa, Ėv, İv]T ≥ [F − V − Mε][Eh, Ih, Ea, Ia, Ev, Iv]T.

Again based on ( [35], Theorem 2.2) , we know that if ρ(ΦF−V(ω)) > 1, then we can choose ε small
enough such that ρ(ΦF−V−Mε

(ω)) > 1. Again by ( [35], Theorem 2.2) and and the standard comparison
principle, there exists a positive ω− periodic function ν(t) such that x(t) ≥ x̃1(t)ep1t, where x̃1(t) =

(Ẽi(t), Ĩi(t))T, for i = a, h, v, and p1 = 1
ω

ln ρ
(
Φ(F−V−Mε )(ω)

)
> 0 which implies that

lim
t→∞

Ei(t) = ∞, and lim
t→∞

Ii(t) = ∞, i = a, h, v.

which is a contradiction in M∂ since M∂ converges to M0. and M0 is acyclic in M∂. By ( [39],
Theorem 1.3.1), for a stronger repelling property of ∂X0, we conclude that P is uniformly persistent
with respect to (X0, ∂X0), which implies the uniform persistence of the solutions of system (3) with
respect to (X0, ∂X0) ( [39], Theorem 3.1.1). It follows from Theorem 3.1.1 in [39] that the solution
of (3) is uniformly persistent. �

Appendix C. Optimal control framework

In this section, an optimal control problem for a seasonal Trypanosoma brucei rhodesiense
model (4) is formulated and analysed. The main goal being to minimize the population of infected
humans at minimal cost of implementation. We define our objective functional as follows

J(u1(t), u2(t)) =

∫ t f

0

(
C1Ih(t) + C2Ia(t) +

W1

2
u2

1(t) +
W2

2
u2

2(t)
)

dt. (10)

The optimal control problem becomes seeking an optimal functions, U∗ = (u∗1(t), u∗2(t)), such that

J(u∗1(t), u∗2(t)) = inf
(u1,u2)∈U

J(u1(t), u2(t)),

for the admissible set U = {(u1(t), u2(t)) ∈ (L∞(0, t f ))2 : 0 ≤ ui(t) ≤ qi; qi ∈ R
+, i = 1, 2}, where qi

denotes the upper bound of the controls.
In what follows, we investigate the existence of an optimal control pair basing our analysis on the

work of Fleming and Rishel (1975) [40]. Based on Theorem 1 we are now aware that all the variables
of system (4) have a lower and upper bounds.
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Theorem 4. There exists an optimal control U∗ to the problem (4).

Proof. Suppose that f(t, x,u) be the right-hand side of the (4) where by x = (S h, Eh, Ih,Rh, S a, Ea, Ia,

Ra, S v, Ev, Iv and u = (u1(t), u2(t)) represent the vector of state variables and control functions
respectively. We list the requirements for the existence of optimal control as presented in Fleming and
Rishel (1975) [40]:

1. The function f is of class C1 and there exists a constant C such that |f(t, 0, 0)| ≤ C, |fx(t, x,u)| ≤
C(1 + |u|), |fu(t, x,u)| ≤ C;

2. the admissible set of all solutions to system (4) with corresponding control in Ω is nonempty;
3. f(t, x,u) = a(t, x) + b(t, x)u;
4. the control set U = [0, u1 max] × [0, u2 max] is closed, convex and compact;
5. the integrand of the objective functional is convex in U.

In order to verify these conditions we write

f(t, x,u) =



bhNh(t) − λh(t)S h(t) − µhS h(t) − u1(t)S h(t) + γhRh(t)
λh(t)S h(t) − (µh + κh)Eh(t)
κhEh(t) − (µh + αh + dh)Ih(t)

u1(t)S h(t) + αhIh(t) − (µh + γh)Rh(t)
baNa(t) − λa(t)S a(t) − µaS a(t) + γaRa(t)

λa(t)S a(t) − (µa + κa)Ea(t)
κaEa(t) − (µa + αa + da)Ia(t)
αaIa(t) − (µa + γa)Ra(t)

bv(t)Nv(t) − λv(t)S v(t) − (µv(t) + u2(t))S v(t)
λv(t)S v(t) − (κv(t) + µv(t) + u2(t)))Ev(t)

κv(t)Ev(t) − (µv(t) + u2(t))Iv(t)



. (11)

From (11), it is clear that f(t, x,u) is of class C1 and |f(t, 0, 0)| = 0. In addition, we have one can easily
compute |fx(t, x,u)| and |fu(t, x,u)| and demonstrate that

|f(t, 0, 0)| ≤ C, |fx(t, x,u)|,≤ C(1 + |u|) |fu(t, x,u)| ≤ C.

Due to the condition 1, the existence of the unique solution for condition 2 for bounded control is
satisfied. On the other hand, the quantity f(t, x,u) is expressed as linear function of control variables
which satisfy the condition 3. �

After demonstrating the existence of optimal controls, in what follows, we characterize the optimal
control functions by utilizing the Pontryagin’s Maximum Principle [33]. Pontryagin’s Maximum
Principle introduces adjoint functions that allow the state system (4) to be attached to the objective
functional, that is, it converts the system (4) into the problem of minimizing the Hamiltonian H(t)
given by:

H(t) = C1Ih(t) + C2Ia(t) +
W1

2
u2

1(t) +
W2

2
u2

2(t) + λ1(t)
[
bhNh(t) − λh(t)S h(t) − (u1(t) + µh)S h + γhRh(t)

]
+λ2(t)

[
λh(t)S h(t) − (µh + κh)Eh(t)

]
+ λ3(t)

[
κhEh(t) − (µh + dh + αh)Ih(t)

]
+λ4(t)

[
u1(t)S h(t) + αhIh(t) − (µh + γh)Rh(t)

]
+ λ5(t)

[
Λa − λa(t)S a(t) − µaS a(t) + γaRa(t)

]
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+λ6(t)
[
baNa(t) − λa(t)S a − (µa + κa)Ea(t)

]
+ λ7(t)

[
κaEa(t) − (µa + da + αa)Ia(t)

]
+λ8(t)

[
αaIa(t) − (µa + γa)Ra(t)

]
+ λ9(t)

[
bv(t)Nv(t) − λv(t)S v(t) − (µv(t) + u2(t))S v(t)

]
+λ10(t)

[
λv(t)S v − (µv(t) + κv(t) + u2(t))Ev(t)

]
+ λ11(t)

[
κv(t)Ev − (µv(t) + u2(t))Iv(t)

]
. (12)

Note that the first part of the terms in H(t) came from the integrand of the objective functional.
Given an optimal control solution (u∗) and the corresponding state solutions (S h, Eh, Ih, Rh, S a, Ea, Ia,

Ra, S v, Ev, Iv) there exist adjoint functions λi(t), (i = 1, 2, 3, · · · , 11) [34] satisfying

∂λi

dt
= −

∂H
∂x

,

with transversality condition λ(t f ) = 0. Thus the adjoint system is:

dλ1

dt
= λ1µh + u1(t)(λ1 − λ4) + (λ1 − λ2)

σv(t)σhβvhIv

σv(t)Nv + σhNh
+ (λ2 − λ1)

σv(t)σ2
hβvhIvS h

(σv(t)Nv + σhNh)2

+(λ10 − λ9)
σv(t)σ2

hβhvIhS v

(σv(t)Nv + σhNh)2 ,

dλ2

dt
= λ2µh + (λ2 − λ3)κh + (λ2 − λ1)

σv(t)σ2
hβvhIvS h

(σv(t)Nv + σhNh)2 + (λ10 − λ9)
σv(t)σ2

hβhvIhS v

(σv(t)Nv + σhNh)2 ,

dλ3

dt
= −C1 + λ3(µh + dh) + αh(λ3 − λ4) + (λ2 − λ1)

σv(t)σ2
hβvhIvS h

(σv(t)Nv + σhNh)2 + (λ9 − λ10)
σv(t)σhβhvS v

σv(t)Nv + σhNh

+(λ10 − λ9)
σv(t)σ2

hβhvIhS v

(σv(t)Nv + σhNh)2 ,

dλ4

dt
= λ4µh + (λ4 − λ1)γh + (λ2 − λ1)

σv(t)σ2
hβvhIvS h

(σv(t)Nv + σhNh)2 + (λ10 − λ9)
σv(t)σ2

hβhvIhS v

(σv(t)Nv + σhNh)2 ,

dλ5

dt
= λ5µa + (λ5 − λ6)

σv(t)σaβvaIv

σv(t)Nv + σaNa
+ (λ6 − λ5)

σv(t)σ2
aβvaIvS a

(σv(t)Nv + σaNa)2 + (λ10 − λ9)
σv(t)σ2

aβavIaS v

(σv(t)Nv + σaNa)2 ,

dλ6

dt
= λ6µa + (λ6 − λ7)κa + (λ6 − λ5)

σv(t)σ2
aβvaIvS a

(σv(t)Nv + σaNa)2 + (λ10 − λ9)
σv(t)σ2

aβavIaS v

(σv(t)Nv + σaNa)2 ,

dλ7

dt
= −C2 + λ7(µa + da) + αa(λ7 − λ8) + (λ6 − λ5)

σv(t)σ2
aβvaIvS a

(σv(t)Nv + σaNa)2 + (λ9 − λ10)
σv(t)σaβavS v

σv(t)Nv + σaNa

+(λ10 − λ9)
σv(t)σ2

aβavIaS v

(σv(t)Nv + σaNa)2 ,

dλ8

dt
= λ8µa + (λ8 − λ5)γa + (λ6 − λ5)

σv(t)σ2
aβvaIvS a

(σv(t)Nv + σaNa)2 + (λ10 − λ9)
σv(t)σ2

aβavIaS v

(σv(t)Nv + σaNa)2 ,

dλ9

dt
= λ9(µv(t) + u2(t)) + (λ2 − λ1)

σ2
v(t)σhβvhIvS h

(σv(t)Nv + σhNh)2 + (λ6 − λ5)
σ2

v(t)σaβvaIvS a

(σv(t)Nv + σaNa)2

+(λ9 − λ10)
σv(t)σhβhvIh

σv(t)Nv + σhNh
+ (λ9 − λ10)

σv(t)σaβavIa

σv(t)Nv + σaNa

+(λ10 − λ9)
σ2

vσaβavIaS v

(σvNv + σaNa)2 + (λ10 − λ9)
σ2

v(t)σhβhvIhS v

(σv(t)Nv + σhNh)2 ,
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dλ10

dt
= λ10(µv(t) + u2(t)) + κv(t)(λ10 − λ11) + (λ2 − λ1)

σ2
v(t)σhβvhIvS h

(σv(t)Nv + σhNh)2 + (λ6 − λ5)
σ2

v(t)σaβvaIvS a

(σv(t)Nv + σaNa)2

+(λ10 − λ9)
σ2

v(t)σaβavIaS v

(σv(t)Nv + σaNa)2 + (λ10 − λ9)
σ2

v(t)σhβhvIhS v

(σv(t)Nv + σhNh)2 ,

dλ11

dt
= λ11(µv(t) + u2(t)) + (λ1 − λ2)

σv(t)σhβvhS h

σv(t)Nv + σhNh
+ (λ2 − λ1)

σ2
v(t)σhβvhIvS h

(σv(t)Nv + σhNh)2

+(λ5 − λ6)
σv(t)σaβvaS a

σv(t)Nv + σaNa
+ (λ6 − λ5)

σ2
v(t)σaβvaIvS a

(σv(t)Nv + σaNa)2 + (λ10 − λ9)
σ2

v(t)σaβavIaS v

(σv(t)Nv + σaNa)2

+(λ10 − λ9)
σ2

v(t)σhβhvIhS v

(σv(t)Nv + σhNh)2 . (13)

In addition, the optimal solution of the Hamiltonian are determined by taking the partial derivatives of
the function H(t) in (12) with respect to control functions ui, followed by setting the resultant equation
to zero and then solve for u∗i , i = 1, 2 follows:

∂H
∂u1

= u∗1W1 − (λ1 − λ4)S h. (14)

∂H
∂u2

= u∗2W2 − (λ9S v + λ10Ev + λ11Iv). (15)

Observe that ∂2H
∂ui = Wi > 0 and this demonstrates that the optimal control problem has minimum value

at the optimal solution U∗(t). Furthermore by setting (15) to zero and solve for u∗i gives

u∗1 =
(λ1 − λ4)S h

W1
, u∗2 =

(S vλ9 + Evλ10 + Ivλ11)
W2

.

By applying the the standard arguments and the bounds for the controls, we obtain the
characterization of the optimal controls as follows:

ui = min
{

qi,max
(
0, u∗i

)}
. (16)
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