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Abstract
Sorghum (Sorghum bicolor L.) is among the staple cereal crops in different parts of 
Ethiopia. However, the presence of antinutritional factors restricts the digestion 
of proteins and bioavailability different minerals. Therefore, this study investigates 
the premilling treatments effects on nutritional composition, antinutritional factors, 
and in vitro mineral bioavailability of the improved Assosa I sorghum variety grown 
in Benishangul- Gumuz Region, Ethiopia. The experiment was conducted in a com-
pletely randomized design with single factor of premilling treatments (control, wash-
ing, soaking, and malting). Among evaluated premilling treatments, malting showed 
significant (p < .05) increase in terms of crude fiber, utilizable carbohydrate, gross en-
ergy, and sodium contents. As compared to the raw sorghum, premilling treatments 
reduced antinutritional contents from 55.81 to 27.4 mg/100 g for tannin, 156.15 to 
70.50 mg/100 g for phytates, and 29.9 to 3.22 mg/100 g for oxalate. The premill-
ing techniques also significantly (p < .05) improved in vitro mineral bioavailability as 
compared to unprocessed sorghum grains. Among the premilling treatments, malting 
showed significant difference (p < .05) in terms of reduction of tannins, phytates, and 
oxalate contents with relatively higher mineral bioavailability. In order to enhance the 
food and nutritional value of sorghum particularly for children and lactating mothers, 
it is recommended to germinated the grains. Flour from germinated grain also can be 
used in combination with other nutrient- dense foods to formulate healthy diets for 
children and maternal nutrition.
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1  | INTRODUC TION

Sorghum (Sorghum bicolor L.) is the sixth most planted crop in the 
world, and the second cereal grain in Africa, which is used as human 
staple food grain in many semiarid and tropical areas of the world 
(Zhao et al., 2019). Notably in sub- Saharan Africa and Asian con-
tinent, approximately 500 million of the poorest and most food- 
insecure people rely on sorghum for their protein and energy 
requirements (Gebreyes, 2017). According to Food and Agricultural 
Organization of the United Nations, about 76.3% of Ethiopian pop-
ulations rely on consumption of sorghum (FAO, 2017). The grain is 
the third important staple cereal crop after maize and teff in Ethiopia 
(CSA, 2019), which is processed into flour and used in a variety of 
staple foods for the general public and children under age of five 
(Tasie & Gebreyes, 2020).

Regarding nutritional point of view, sorghum is a good source 
of carbohydrate (55.2%– 72.2%), protein (8.6%– 18.9%), ash (1.1%– 
2.4%), oil (1.7%–  4.9%), and fiber (9.3%– 25.2%) (Queiroz et al., 2015). 
Gerrano et al. (2016) also reported that sorghum flour contained (in 
mg/kg) 195.0 –  477.0 Ca, 950.0 –  2,146.9 K, 14.5– 58.6 Na, 28.8– 
55.1 Fe, and 12.0– 23.0 Zn. Despite to this, sorghum grains contain 
different antinutritional factors like tannins, phytic acids, and oxa-
late in relatively higher concentration as compared to other cereal 
crops (Ojha et al., 2018). The antinutritional factors have a nega-
tive impact in human nutrition by hindering bioavailability through 
binding of important minerals (Fe, Ca, and Zn) and digestibility of 
proteins that interferes on growth, reproduction, and health of the 
general public and in particular children under ages of five (Popova 
& Mihaylova, 2019).

In Ethiopia, sorghum is consumed without doing any efforts to 
minimize the antinutritional contents. However, there are premill-
ing processing techniques that can help to reduce the high con-
centration of antinutritional factors to improve bioavailability of 
minerals and digestion of proteins (Samtiya et al., 2020; Tamilselvan 
& Kushwaha, 2020) and organoleptic properties (Oghbaei & 
Prakash, 2016).

Assosa I, a sorghum variety is a highly productive, stress toler-
ant improved variety released by Ethiopian Institute of Agricultural 
research. Even though staple food crop widely distributed and 
produced in the region, the antinutritional contents and means to 
minimize the contents were not released as part of the technology 
package for the users. Therefore, this study was initiated to investi-
gate the impact of premilling treatments to minimize the concentra-
tion of antinutritional factors to acceptable level for better nutrition 
and health of the community.

2  | MATERIAL S AND METHODS

2.1 | Experimental material

Sorghum selected for this study was grown in Benishangul- Gumuz 
Region (BGR) in the western part of Ethiopia which is one of the 

dominant sorghum producing areas in Ethiopia, where the crop 
is used as staple food for the majority of the people in the region 
(CSA, 2019). Based on this context, Assosa I sorghum variety (14 kg) 
was collected from Assosa Agricultural Research Centre (AARC), 
Ethiopia. The grains were cleaned manually by removing any dock-
ages (foreign material, damaged and broken seeds, and shriveled and 
insect- attacked grains).

2.2 | Experimental design

The experimental design used was a completely randomized design 
(CRD) with single factor (processing technique) of four levels (con-
trol = raw, washed, soaked, and malted) replicated three times (12 
experimental units).

2.3 | Premilling techniques

The control unprocessed sorghum grains were after cleaning di-
rectly milled into flour. For the washing, the cleaned sorghum grains 
were washed three times with tap water and dried. For the soak-
ing, cleaned sorghum grain samples were washed three times and 
steeped in sorghum: tap water ratio (1:5, w/v) at 25°C for 6h in a 
steeping vessel containing 0.2% NaOH solution (Bekele et al., 2012). 
At the end of 6 hr, the vessel drained and then refilled with fresh 
tap water at room temperature. The water then drained, and refilled 
every 3 hr for the next 18 hr, with a 1- hr air rest between each re-
fill. Then, the steeped grains were dried at 50°C for 24 hr. For the 
treatment of malted sorghum grains, steeping procedure was done 
as described for soaking treatment. The steeped sorghum grains 
were then germinated in a germination vessel at room temperature 
and approximately at 95% relative humidity for 41 hr (after prelimi-
nary test). The germinating grains were turned occasionally to avoid 
meshing of the roots and shoots. At the end of each germination 
treatment, the samples were removed from the vessel and then 
dried in an oven (DHG- 9203A, Shanghai, China) at 50°C for 24 hr. 
All the processed sorghum grain samples were milled separately into 
the flour using laboratory mill (RRH- 200) to pass through 0.5 mm 
sieve size (AACC, 2000). The flours were packed in heavy- duty poly-
ethylene bags wrapped using aluminum foil and stored at 4°C until 
used for analysis. The premilling treatments flowchart is as given in 
Figure 1.

2.4 | Proximate composition and energy content

The moisture content of the samples was determined by oven (DHG 
9,203, Shanghai, China) drying method (105°C for 6 hr) by taking 
about 3 g sample (dried sample powder) as described in the AOAC 
(2000) method 925.10. Crude protein content was determined by 
Kjeldahl method (VELP. Scientifica UDK 159, Automatic distillation 
& titration system 230V) of nitrogen content analysis after digestion 
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of about 1.0 g of sample as described in AOAC (2000) method 
920.87. The crude fat content was determined by taking about 1.5 g 
of sample by Soxhlet extraction (SZC- C, Shanghai Qianjian, China) 
method using petroleum ether as a solvent (AOAC, 2000, method, 
920.39). The crude fiber content was determined following AOAC 
(2000) method 962.09 after sequential digestion with 1.25% H2SO4 
and 28% KOH, screening through 75 micron, drying and ignition in 
a muffle furnace (Sx2- 4– 10, Zhejiang, China) to subtract ash from 
crude fiber. The total ash content was determined gravimetrically 
after carbonization of about 2.0 g sample on a blue flame of Bunsen 
burner followed ignition at 550°C until ashing complete (AOAC, 
2000, method 923.03). Utilizable carbohydrate content (UCC) was 

calculated by the difference method (FAO, 1998), and gross energy 
content was calculated by Atwater's conversion factors (FAO, 2002).

2.5 | Mineral content

The mineral content of the samples was determined by atomic 
absorption spectrophotometer (AAS) (Agilent FS240 AA, USA) 
following AOAC (2000) method 985.35 after carbonization on a 
heating plate and dry ashing of about 3.0 g of samples in a muf-
fle furnace (Sx2- 4– 10, Zhejiang, China) at 550°C until ashing was 
completed. The white ash was dissolved using 5 ml of 6N HCl, 

F I G U R E  1   Premilling treatments 
effects on the improved Assosa I sorghum 
grain variety
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dried on a hot plate followed by addition of seven ml of 3N HCl 
heating on a hot plate, and then, finally the solution was diluted 
to the mark (50 ml) with deionized water. The Ca, Fe, and Zn con-
tents were determined by AAS using air– acetylene as a source of 
flame energy for atomization. The absorbance for Fe was meas-
ured at 248.3 nm, and the Fe content was estimated from a stand-
ard calibration curve (0, 0.5, 1, 2, 3, and 4 µg/ml) prepared from 
analytical grade iron wire. The absorbance for Zn was measured at 
213.9 nm, and the Zn content was estimated from a standard cali-
bration curve (0, 0.125, 0.250, 0.50, 0.75, and 1 µg/ml) prepared 
from ZnO. The absorbance of Ca was measured at 422.7 nm after 
addition of 2.5 ml of LaCl3 to the sample solution. The Ca con-
tent was then estimated from the standard solution (0, 0.5, 1, 1.5, 
2, and 2.5 µg/ml) prepared from CaCO3. The Na and K contents 
were determined using flame photometer (ELICO CL 378, India) 
by measuring their emission at 589 and 767 nm, respectively. The 
Na content was estimated from standard solution (0, 0.5, 1, 1.5, 2, 
and 2.5 µg/ml) prepared from NaCl. The K content was estimated 
from a standard solution (0, 2, 4, 6, 8, 10, and 12 µg/ml) prepared 
from KCl.

The mineral elements content was calculated using the Equation 1:

where DF = dilution factor (50 ml for Ca, Fe, Zn, K, and Na), and db is 
sample mass on dry matter basis.

2.6 | Antinutritional factors

2.6.1 | Determination of condensed tannins content

The condensed tannins content was determined according to the 
method described by Maxson and Rooney (1972). About 1.000g of 
the sample was weighed and mixed with 10 ml of 1% HCl solution 
in methanol in a screw cap test tube. Then, the tube was shaken 
for 24 hr at room temperature on a mechanical shaker (Hy- 2(C), 
Shanghai, China). The solution was centrifuged (sigma 2- 16KC, UK) 
at 1,000 rpm for 5 min. One ml of supernatant was transferred to 
another test tube and mixed with 5 ml of vanillin– HCl reagent (pre-
pared by combining equal volume of 8% concentrated HCl in metha-
nol and 4% vanillin in methanol). The D (+)- catechin was used as a 
standard for condensed tannins content determination. A 40 mg of 
D (+)- catechin was weighed and dissolved in 1,000 ml of 1% HCl 
solution in methanol, which was used as stock solution from which 
a series of standard solutions (0, 12, 24, 36, 48, and 60 μg /ml) were 
prepared by mixing with 5 ml 1% HCl in methanol. The absorbance of 
samples and the standard solutions were measured at 500nm using 
UV- VIS Spectrophotometer (JASCO V- 630, Shimadzu Corporation, 
Tokyo, Japan) after 20 min. The condensed tannins content was de-
termined from standard curve of catechin, and result was expressed 
as mg/100g.

2.6.2 | Determination of phytate content

Phytate content was determined by the method described by 
Vaintraub and Lapteva (1988). About 0.100 g of sample was ex-
tracted with 10 ml of 2.4% HCl in a mechanical shaker (Hy- 2(C), 
Shanghai, China) for 1 hr at a room temperature. The extract was 
centrifuged (Sigma 2- 16KC, UK) at 3,000 rpm for 30 min. The clear 
supernatant was used for phytate estimation. One ml of wade rea-
gent (containing 0.03% solution of FeCl3.6H2O and 0.3% of sulfo-
salicylic acid in water) was added to 3 ml of the sample solution 
(supernatant), and the mixture was mixed on a vortex mixer for 5 s. 
The absorbance of the sample solutions was measured at 500 nm 
using UV- VIS spectrophotometer (JASCO V- 630, Shimadzu 
Corporation, Tokyo, Japan).). A series of standard solutions from 
sodium salt of phytic acid were prepared to contain 0.0, 4.5, 9.0, 
18.0, 27.0, and 36.0 μg/ml of phytic acid (analytical grade sodium 
phytate) in 0.2N HCl. One ml of the wade reagent was added to 
each test tube, and the solution was mixed on a Vortex mixer for 
5 s. The mixture was centrifuged for 10 min, and the absorbance of 
the sample and standard was measured at 500 nm by using deion-
ized water as a blank. The phytate content was determined from 
standard curve of sodium salt of phytic acid, and result was re-
ported in mg /100g.

2.6.3 | Determination of oxalate content

The oxalate contents were determined using the method of AOAC 
(2000) method 974.24. About 2g samples were suspended in 
190 ml of distilled water contained in a 250 ml volumetric flask; 
10 ml of 6M HCl was added, and the suspension was digested at 
100°C for 1 hr, followed by cooling and then made up to 250 ml be-
fore filtration. A 125 ml of the filtrate was measured into a beaker, 
and four drops of methyl red indicator were added, followed by the 
addition of concentrated NH4OH solution (dropwise) until the test 
solution changed from its salmon pink color to a faint yellow color 
(pH 4– 4.5). Each portion was then heated to 90°C, cooled, and fil-
tered to remove precipitate containing ferrous ion. The filtrate was 
again heated to 90°C, and 10 ml of 5% CaCl2 solution was mixed 
while being stirred constantly. After heating, it was cooled and 
left overnight at 5°C. The solution was then centrifuged (Sigma 2- 
16KC, UK) at a speed of 2,500 rpm for 5 min. The supernatant was 
decanted, and the precipitate was completely dissolved in 10 ml of 
20% (v/v) H2SO4, solution. The total filtrate resulting from diges-
tion of 2g of the sample was made up to 300 ml. Aliquots of 125 ml 
of the filtrate was heated until near boiling and then titrated with 
standard 0.05M KMnO4 solution to a faint pink color which per-
sisted for 30s. The calcium oxalate content was expressed as cal-
cium oxalate equivalent and calculated using the formula:

(1)Element (mg∕100g) = [ (μg∕mL) × DF]∕ [ ( samplemass, db ) × 10]

Oxalate

(

mg

100mg

)

=
T × Vme × DF × 10S

ME ×MF
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where T is the titer of KMnO4, (ml), Vme is the volume - mass equivalent 
(i.e., 1 cm3 of 0.05 M KMnO4 solution is equivalent to 0.00225 g anhy-
drous oxalic acid), DF is the dilution factor (2.4), where the total volume 
of filtrate (300 ml) divided by aliquot used (125 ml) for titration, ME is 
the molar equivalent of KMnO4 in oxalate (KMnO4 redox reaction), and 
MF is the mass of flour used.

2.7 | Molar ratios and bioavailability of minerals

The molar ratio of phytate to minerals (Ca, Zn, and Fe) was calculated 
by dividing the mole of phytate (mass of phytate/660 g/mol) to the 
mole of minerals (mass of Ca = 40 g/mol; mass of Zn = 65 g/ mol; 
mass of Fe = 56 g/mol) (FAO, 2018). Also, the oxalate to calcium 
molar ratio was calculated by dividing the mole of oxalate (88 g/mol) 
to calcium mole. The molar ratios found were also compared with 
the critical toxicity values described in WHO/FAO (2004).

2.8 | Statistical analysis

The triplicate data were subjected to analysis of variance (ANOVA). 
All the statistical analyses were performed using SAS version 9.3, 
and significance difference was considered at p ≤ .05. Fisher's least 
significant difference (LSD) was used for mean comparison tests to 
identify significant differences among means (p ≤ .05). The results 
were expressed as mean ± standard deviation.

3  | RESULTS AND DISCUSSION

3.1 | Proximate composition and energy contents of 
Assosa I improved sorghum variety

The processing methods had a significant (p < .05) effect on the 
moisture content of the sorghum flour samples (Table 1). The result 
showed that the highest moisture content (8.70%) was recorded 
for directly milled unprocessed sorghum grain flour, and the low-
est (5.21%) was from malted sorghum grains flour. This might be in 
part due to drying of treated samples for extended drying time but 

not the case for raw sample. On sorghum grains malting, there is 
grains constituent modification under controlled conditions, starch 
granules are modified in part hydrolyzed, and this resulted into re-
duced water- binding capacity and that is why low moisture content 
was recorded in the malted sorghum grains. Almost similar moisture 
content for raw, soaked and malted, sorghum grain flours (8.38 to 
8.76, 6.07 to 6.56, and 5.33 to 6.37%, respectively) were reported 
by Afify et al. (2012).

There was a significant (p < .05) difference in the protein content 
between control (unprocessed) and processed samples. However, 
there was no significant (p > .05) effect on the protein content be-
tween the washed and soaked sorghum grains. Among premilling 
processing methods, higher protein content was observed in malted 
sorghum grains, but was less than the protein content in the raw 
sorghum grains (Table 1). This might be because of the loss of water- 
soluble nitrogenous compounds during rinsing, soaking of grains and 
utilization of protein for the growth and development of the embryo 
on germination of sorghum grains (Nour et al., 2015). However, the 
protein content of the malted sorghum grains found in this study 
was higher than the values reported for malted sorghum grains 
elsewhere (6.90%) (Tamilselvan & Kushwaha, 2020), which could 
be possibly to the difference in the genetic makeup and agronomic 
practices. The protein content obtained from unprocessed sorghum 
grains was similar to the value reported for sorghum grain varieties 
grown in Ethiopia (8.20 to 16.48%) (Tasie & Gebreyes, 2020).

The study showed that there was no significant difference 
(p > .05) in the crude fat contents between raw and washed sorghum 
grains. However, soaked and malted sorghum grains had significantly 
(p < .05) lower crude fat content compared to the control sample. 
Different authors also indicated that the negative impact of malting 
process in terms of reducing the fat content of sorghum, pearl millet 
and maize grains (Derbew & Moges, 2017; Inyang & Zakari, 2008; 
and Kikafunda et al., 2006). The decrease in the fat content could 
be due to an increase in the activity of lipolytic enzymes during 
germination, which hydrolyzed the fats into fatty acid and glycerol 
(Onweluzo & Nwabugwu, 2009).

The fiber content was significantly (p < .05) affected by the 
processing methods. The value for raw sorghum grains (2.96%) was 
reduced to 1.67% and 2.79% as a result of washing and soaking, re-
spectively (Table 1). A similar reduction of fiber content in the soaked 

TA B L E  1   Premilling treatments effects (washing, soaking, and malting) on proximate composition (% db) and energy (kcal/100 g db) 
contents of Assosa I improved sorghum grain variety

Premilling MC PC FC FiC AC UCC Energy

Control 8.7 ± 0.6a 9.55 ± 0.03a 3.68 ± 0.02a 2.96 ± 0.02b 1.60 ± 0.03a 82.2 ± 0.1d 400.2 ± 0.3c

Washed 6.4 ± 0.6c 8.0 ± 0.1c 3.7 ± 0.1a 2.79 ± 0.03c 1.52 ± 0.04b 83.98 ± 0.04c 401.4 ± 0.3b

Soaked 6.9 ± 0.5b 7.9 ± 0.3c 3.51 ± 0.05b 1.67 ± 0.02d 1.01 ± 0.02c 85.9 ± 0.2a 406.8 ± 0.2a

Malted 5.2 ± 0.5d 8.44 ± 0.03b 3.3 ± 0.1c 3.00 ± 0.03a 1.06 ± 0.02c 84.2 ± 0.2b 400.3 ± 0.6c

CV 0.81 1.64 2.41 0.84 2.00 0.10 0.11

LSD 0.11 0.28 0.17 0.044 0.05 0.16 0.85

Note: Control = unprocessed sorghum grains. Means with different letters across a column are significantly different.
Abbreviations: AC, ash content; FC, fat content; FiC, fibre content; MC, moisture content; PC, protein content; UCC, utilizable carbohydrate content.
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and increment of fiber content in the malted sorghum grains was 
also reported from Egypt (Afify et al., 2012). The decline in the fiber 
content of soaked sorghum might be due to increase in the activity 
of β- glucanase enzyme which could reduce the fiber contents of sor-
ghum on the soaking (Mathur & Choudhry, 2009) while the increase 
upon malting, might be attributed to the synthesis of structural car-
bohydrates, such as cellulose and hemicelluloses during germination 
(Pandey & Awasthi, 2015). The increase in the fiber content is desir-
able for people with prevention of obesity, cardiovascular disease, 
type 2 diabetes, and large intestine cancer (Champ et al., 2003), but 
might not desired to formulate complementary foods for children.

Total ash content shows that premilling processing methods had 
significantly (p < .05) decreased the ash content. Similar reduction 
of the ash content was reported by Gernah et al. (2011) on malt-
ing of sorghum grains. The ash content of soaked and malted sor-
ghum grains was significantly (p < .05) decreased when compared 
to unprocessed sorghum grains, but it was not significantly (p > .05) 
different from each other. Similar reduction of ash contents during 
soaking and malting also reported by Keyata et al. (2018). The re-
duction of ash content during soaking and malting might be due to 
leaching out of some minerals. The decrease in the ash content of 
malted sorghum can be due to the consumption of minerals during 
the growth of the germ (Mubarak, 2005).

Table 1 shows the processed and unprocessed sorghum grains 
had a significant (p < .05) effect on the utilizable carbohydrate con-
tent (UCC). The higher UCC (85.91%) was recorded in the soaked 
sorghum grains followed by malted grains (84.18%) while the lower 
UCC (82.21%) was observed in the raw sorghum grains followed by 
washed sorghum grains (83.98%). The result indicated that process-
ing methods have increased the content of utilizable carbohydrate 
of sorghum grains flour. This could be attributed to the reduction of 
the moisture, protein, ash, fat (particularly in soaked and malted sor-
ghum), and fiber (specifically in washed and soaked) contents, since 
UCC was calculated by differences.

The processing methods had significant (p < .05) effect on the 
gross energy content. The highest energy content (406.83 kcal/100g) 
was noted for soaked sorghum grains followed by the washed sor-
ghum grains (401.39 kcal/100g). However, the lowest gross energy 
content (400.19 kcal/100g) was recorded in unprocessed sorghum 
grains sample followed by malted sorghum grains (400.28 kcal/100g), 
but with no significant difference (p > .05) between them. This might 

be attributed to the relatively low- fat content obtained in malted 
sorghum grains and less carbohydrate content recorded in the un-
processed sorghum grains sample.

3.2 | Mineral content

Minerals play a vital role in the maintenance of human health. Cereal 
grains are rich in minerals, but the bioavailability of these minerals is 
usually low due to the presence of antinutritional factors (Nadeem 
et al., 2010). Processing methods before milling showed significant 
(p < .05) effect on the mineral content of samples (Table 2). The results 
showed an increase in the mineral content for soaked samples but a 
decrease for malted grains. An increase from the soaked grain sam-
ples might be in part contributed to the adsorption of minerals from 
tap water during soaking time (Claver et al., 2011). Furthermore, more 
minerals could be released during soaking due to release of bounded 
minerals with phytate because of solubility of phytate in water (Nour 
et al., 2015; Vashishth et al., 2017). Claver et al. (2011) reported that 
sorghum soaked for 6 to 24 hr had significantly increased Na, Ca, and 
Zn contents. Similar result in terms of increments of Ca, K, and Na con-
tents during soaking of wheat and oat grains was also reported (Samia 
et al., 2013). The decrease in the mineral contents during malting could 
be due to the use of the minerals in the process of germination by the 
growing embryo (Udeh et al., 2018). For instance, the decrease in the 
zinc content during the malting process could be due to the use of 
zinc in cell reproduction and tissue growth (Scherz & Kirchhoff, 2006). 
Omoikhoje and Obasoyo (2018) indicated a decrease in K, Na, Fe, and 
Zn contents during germination of sorghum grains and similar decrease 
in Ca, K, Fe, and Zn contents in malted sorghum grains were reported 
(Claver et al., 2011; Samia et al., 2013), whereas the increase in the 
sodium content of malted sorghum grains was reported by Claver 
et al. (2011). The increment of sodium during malting probably was a 
result of the conversion of the insoluble reserve foods enzymes in the 
grains (Rooney & Serna- Saldivar, 1991).

3.3 | Antinutritional factors content

The impact of processing methods on antinutritional contents of 
tannins, phytates, and oxalate are given in Table 3.

TA B L E  2   Premilling treatments effects (washing, soaking, and malting) on mineral (mg/100 g db) contents of Assosa I improved sorghum 
grain variety

Premilling Sodium Potassium Calcium Iron Zinc

Control 29.5 ± 2.2c 333.4 ± 6.4c 34.02 ± 0.34b 3.0 ± 0.1c 0.93 ± 0.03ba

Washed 31.9 ± 1.9c 454.04 ± 0.40a 34.1 ± 0.8b 4.84 ± 0.09b 0.89 ± 0.01c

Soaked 39.4 ± 1.9b 399.2 ± 1.3b 35.3 ± 0.1a 5.13 ± 0.06a 0.97 ± 0.02a

Malted 47.2 ± 1.0a 323.9 ± 2.4d 33.0 ± 0.2c 2.97 ± 0.1c 0.91 ± 0.02bc

CV 4.62 0.920 1.32 2.69 2.29

LSD 3.42 6.94 0.90 0.21 0.04

Note: Control = unprocessed sorghum grains. Means with different letters across a column are significantly different.
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Sorghum grains bear antinutritional factors, particularly con-
densed tannins which may form stable complexes with protein, 
metal ions, and other macromolecules like polysaccharides and can 
result in reduction of the digestibility of proteins and limit availability 
of the nutrients in the gut (Selle et al., 2010). Therefore, application 
of different premilling processing methods could have potential to 
reduce the condensed tannins content. Results of this study show 
that processing methods had significantly (p < .05) decreased the 
condensed tannin contents. The condensed tannin contents reduced 
significantly after malting, soaking, and washing by 49.04, 34.06, and 
6.42%, respectively. This finding revealed that malting process had 
the highest reductions of condensed tannin contents followed by 
soaking of sorghum grains. The decrease in the condensed tannin 
during malting was also reported in sorghum in other study (Ojha 
et al., 2018) and in other cereal grains (Forsido et al., 2020). This 
might be due to water solubility of condensed tannins mainly con-
centrated in the seed coat of grains, for which can be easily leached 
out during washing and soaking (Ogbonna et al., 2012).

Phytic acid is mostly concentrated in the bran (aleurone layer) 
of grains and germ, which may lower bioavailability of minerals and 
digestibility of proteins and carbohydrates, by inhibiting the nor-
mal activity of digestive enzymes like pepsin, trypsin, and amylase 
(Kumar et al., 2010). In this context, premilling treatments applied 
in this study had significantly (p < .05) reduced the phytic acid con-
tents in the sorghum grains. The phytic acid content was reduced by 
15.6%, 43.7%, and 54.9% after washing, soaking, and malting treat-
ments, respectively. The activation of endogenous phytase enzymes 
in the grain during malting time could hydrolyze phytates structure 
and resulted in a decrease in the concentration of phytates. A sim-
ilar reduction of phytic acid content was observed during soaking 
and germination of chickpea (Olika et al., 2019), malted sorghum 
grains (Ojha et al., 2018), malted teff, barley, and oats grains (Forsido 
et al., 2020).

Oxalic acid and its salts can have deleterious effects on human 
nutrition and health, particularly by decreasing calcium absorption 
and aiding the formation of kidney stones (Gemede, 2020). The pre-
milling treatment methods showed significant (p < .05) impact on 
the reduction of oxalate content in the sorghum grains. The oxalate 
content of unprocessed sorghum grains was 29.9 mg/100 g but the 
concentration was reduced by 40.30%, 80.47%, and 89.23% after 

washing three times, soaking for 18 hr, and malting for 41 hr, respec-
tively. The result showed that sorghum malting significantly contrib-
uted to the decrease of oxalate concentration in the grain. This might 
be due to leaching of oxalate compound in water during combined 
processing technique such as washing, soaking, and malting by it-
self. Similar results were reported for reduction of oxalate content 
in soaked and malted barley grains (Brudzyński & Salamon, 2011). 
However, the oxalate content obtained from both unprocessed and 
processed sorghum grains in this study was below the recommended 
daily intake range for human consumption (maximum tolerated level 
of 50 mg/100 g) (Massey et al., 2001).

3.4 | Molar ratios and bioavailability of minerals

Total and bioavailable mineral content is negatively influenced by 
antinutritional factors such as phytate, tannin, and oxalate. In order 
to increase the bioavailability of mineral, premilling treatments and 
processing have a positive impact through reducing the concentra-
tion of mineral inhibitors and favorably altering food components 
into complex ligands for metal ions (Rousseau et al., 2020). The cal-
culated values of the molar ratios compared with the reported criti-
cal toxicity values are given in Table 4.

Premilling treatments significantly (p < .05) improved the bio-
availability of calcium content in washed (0.24), soaked (0.15), and 
malted sorghum grains (0.13) as compared to the control sorghum 
grain sample (0.28). The phytate:Ca molar ratio less than 0.17 is an 
indicator of Ca bioavailability (Castro- Alba et al., 2019). The result 
showed that absorption of calcium in soaked and malted sorghum is 
most probably not adversely affected by phytate.

The phytate:Fe molar ratio has to be lower than 1.0 and pref-
erably lower than 0.4 for favorable iron absorption (Hurrell, 2004). 
In this concern, all premilling treatment methods had improved iron 
bioavailability when compared to the control sorghum grain sample. 
However, all treated sorghum grain samples have above a critical 
value (less than 1.0) of phytate:Fe molar ratio reported by Hurell 
(2004). The poor iron bioavailability in the raw and premilling treat-
ments of sorghum grains might be due to the reported higher phy-
tate content and insufficient phytic acid degradation (Hailu & Addis, 
2016).

TA B L E  3   Premilling treatments effects (washing, soaking, and malting) on antinutritional contents (mg/100 g, db) of Assosa I improved 
sorghum grain variety

Premilling Tannin Reduction (%) Phytate Reduction (%) Oxalate
Reduction 
(%)

Control 55.81 ± 0.75a - 156.15 ± 0.24a - 29.9 ± 0.8a - 

Washed 52.2 ± 1.5b 6.42 131.8 ± 0.6b 15.57 17.85 ± 0.46b 40.30

Soaked 36.80 ± 1.05c 34.06 88.0 ± 0.7c 43.66 5.8 ± 0.2c 80.47

Malted 27.4 ± 0.5d 49.04 70.5 ± 1.1d 54.87 3.22 ± 0.02d 89.23

CV 2.66 0.72 2.57

LSD 2.28 1.61 0.73

Note: Control = unprocessed sorghum grains. Means with different letters across a column are significantly different.
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The phytate to Zn ratio of less than 10 shows adequate availabil-
ity of Zn, and problems are encountered when the value is greater 
than 15 (Morris & Ellis, 1989). In this regard, processing methods 
had significantly (p < .05) increased zinc bioavailability in sorghum. 
Among the processing methods applied, sorghum grain malting had 
the highest zinc bioavailability followed by soaked sorghum grains 
while washed sorghum grains had the lowest.

Frontela et al. (2009) showed that when oxalate:Ca is higher than 
1.0, dietary calcium availability is limited. The oxalate:Ca molar ra-
tios of unprocessed and processed sorghum grains were below the 
critical level of 1.0. This implies that oxalate may not have adverse 
effects on bioavailability of dietary calcium in the studied samples.

The molar ratio of phytate*Ca:Zn ratio higher than 200 is re-
ported to negatively influence the zinc bioavailability (Castro- Alba 
et al., 2019). The ratios in both treated and untreated sorghum grain 
samples were within the recommended values and probably favor 
for bioavailability of zinc.

4  | CONCLUSIONS

The study showed that premilling treatments had a significant 
(p < .05) impact on the nutritional compositions, antinutritional fac-
tors, and mineral bioavailability of sorghum flour. Among premilling 
treatments, malting significantly increased the minerals content but 
decreased concentration of antinutritional factors. This implies use 
of malted sorghum grains as compared to the raw sorghum grains 
significantly improved protein digestion and minerals bioavailability 
which contribute for better nutrition and health of the public in gen-
eral and children under ages of five in particular. Therefore, malted 
sorghum- based weaning food should be enhanced with combination 
of other nutrient- dense food which could serve for infant and young 
children to support their early growth and development.
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