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ABSTRACT 

Changes in Land cover land use (LCLU) have long been considered to be among the many factors 

responsible for the physical and chemical degradation of the soil. Soils are potentially a viable sink 

for atmospheric carbon and could contribute to mitigating global climate change. Soil Organic 

Carbon (SOC) content exhibits considerable spatial variability both horizontally according to land 

use and vertically within the soil profile. Land cover land (LCLU) use is one of the most important 

determinants of SOC stock. The focus of this study was to investigate the effects of LCLU change 

on SOC stock in the Greater Gaborone region of Botswana between 1988 and 2022. The study 

employed Remote Sensing and GIS tools for analyzing LCLU change in the study area between 

1988 and 2022. Landsat images of 1988 and 2002 and Sentinel-2A images of 2022 were used to 

study the changes in the LCLU of the study area. Image classification was performed using a 

Supervised classification approach based on a Maximum Likelihood classifier. Six major LCLU 

types (water body, tree cover, cropland, shrubland, bare land, and built-up) were identified in the 

study area. Post Classification Comparison (PCC) approach was used to detect LCLU change and 

also quantify the magnitude of the change. Shrubland class was found to be the dominant LCLU 

type in the study area during the study period. In the study period, a significant LCLU gain was 

observed in the built-up class (75.12 km2 (310.16%)), while significant losses were observed in 

shrub land (24.16 km2 (5.67%)) and tree cover (33.32 km2 (25.69%)) classes.  

The Walkley and Black method (1934), core method (Blake and Hartge, 1986), Bouyoucos 

hydrometric methods (van Reeuwijk, 2002; Petrenko & Berezhnyak, 2008), and pH meter 

(Okalebo et al., 2002) were used to determine SOC content, bulk density, soil texture, and pH, 

respectively. The current SOC stock in the study area was estimated to be 4.36 MtC, with tree 

cover accounting for 1.13 MtC (25.87%), shrubland 2.83 MtC (64.86%), cropland 0.14 MtC 

(3.24%), built-up 0.22 MtC (5.11%), and bare land 0.04 MtC (0.92%). The higher SOC in the 

build-up compared to bare land was due to its higher clay and silt content. This study found that 

LCLU changes were responsible for variations in SOC content, soil bulk density, pH, and texture 

in the study area. Also, it was found that soil under tree cover stored more SOC compared to the 

other LCLU types due to its low bulk density, low pH, and high silt and clay contents. Furthermore, 

soil bulk density, pH, and sand fraction negatively correlated with SOC content, while silt and clay 

showed a positive correlation. In addition, the study found that converting from tree cover to 
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shrubland or from shrubland to either cropland, built-up or bare land resulted in the loss of SOC 

from the study area.  

Analysis of future LCLU changes between 2022 and 2040, modelled using the CA-ANN model in 

MOLUSCE, showed that the tree cover will lose 17.4 km2 of its area coverage by 2040, implying 

more SOC will be lost from the study area. SOC loss is detrimental to the environment as it 

increases the concentrations of greenhouse gas CO2 in the atmosphere, which contributes to 

climate change. Therefore, appropriate land management interventions that increase SOC stock 

and reduce carbon emissions should be designed and implemented in the study area. 

Keywords 

LCLU change, image classification, soil organic carbon, Module for Land Use Change 

Evaluation, Greater Gaborone  
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CHAPTER 1: INTRODUCTION  

1.1. Study Background 

Land cover land use change (LCLU) is one of the driving forces of environmental change and is 

increasingly becoming a global concern due to its impact on the local, regional, and global 

environment (Matlhodi et al., 2021; Permatasari et al., 2021). LCLU change refers to the 

modification of the earth's terrestrial surface due to complex interactions between humans and the 

physical environment (Liping et al., 2018). These changes have historically been linked to 

variations in biophysical factors, whereas more recent changes are primarily attributed to 

anthropogenic factors such as population growth, agriculture, economic and industrial 

development, and others (Matlhodi et al., 2019; Hossain & Moniruzzaman, 2021).  

Over the past decades, humans have increasingly taken a large role in the modification of the 

environment (Pandian et al., 2014; Andualem et al., 2018). Studies from Sub-Saharan Africa 

(SSA) and other developing countries have shown that agriculture expansion, population growth, 

poverty, and the unsustainable use of natural resources are responsible for LCLU changes, 

especially in local communities surrounding the natural resource base (Haller et al., 2008). In 

Botswana, LCLU changes are primarily due to human and livestock population pressures, rapid 

urbanization, and general development activities such as increased demand for arable land, 

tourism, water, and others (Vanderpost et al., 1998). Some examples of LCLU changes that have 

been reported in Botswana, specifically in the South East District, include: 

▪ Vegetation changes in the vicinity of settlements (Ringrose et al., 1996);  

▪ A significant decrease in dense woody vegetation covers and a significant decline in the 

area of high-quality rangeland in the Notwane catchment area (Ringrose et al., 1996);  

▪ Bush encroachment, precisely in the area covering the Gaborone dam catchment (Moleele 

et al., 2002);  

▪ Increased croplands and built-up areas around the Gaborone dam catchment (Matlhodi et 

al., 2019).  

These changes were attributed to anthropogenic and natural factors, with the anthropogenic factors 

being the most significant drivers (Matlhodi et al., 2019).   
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Land-use patterns, influenced by a variety of social processes, often result in changes in land cover 

that affect biodiversity, water and radiation budgets, greenhouse gas (GHG) emissions, and other 

factors that, when combined, affect the global climate and the biosphere. Changes in LCLU have 

emerged as a key issue within the scientific community concerned with global environmental 

changes (Dhakal et al., 2010). Land use is one of the most important determinants of soil organic 

carbon (SOC) stock status, as it governs long-term vegetation patterns and the amount of organic 

matter (OM) returned to the soil (Dhakal et al., 2010). Carbon is stored in the living biomass of 

plants by the process of photosynthesis, and it builds up in soils when dead and decaying biomass 

is detached from the parent plant. Long-term carbon sequestration in soils benefits both the 

environment and agriculture. Changes from one LCLU type to another are responsible for large 

carbon fluxes in the terrestrial ecosystem (Dhakal et al., 2010). Changes in LCLU contribute 

approximately 26% of global GHG emissions (natural forest conversion contributes 13.8%), 

compared to 14.3% from transportation and 19% from industry (Wainkwa Chia et al., 2017). Tree 

savannah and shrubland are important ecosystems in semi-arid areas and are regarded as carbon 

sinks, and the conversion of these systems into other uses ultimately reduces soil carbon due to 

soil erosion, decreased plant residue, organic matter input, or soil tillage (Murty et al., 2002; 

Wainkwa Chia et al., 2017). 

Soil is the foundation of terrestrial ecosystems, providing most ecosystem services that benefit 

mankind (Stockmann et al., 2013; Edmondson et al., 2014; Yang et al., 2018). It contains 

about 2344 Pg (1 petagram = 1015 grams) of organic carbon and plays an important role in the 

global carbon cycle (Stockmann et al., 2013). Organic carbon stored in the soil is regarded as one 

of the most important soil properties, exhibiting both temporal and significant spatial variability, 

both horizontally across different LCLUs and vertically within the soil depth (Yao et al., 2020). It 

improves many soil-related functions and services, such as the water holding capacity, structural 

stabilization, and retention and release of plant nutrients (Lal et al., 2018; Lefèvre et al., 2017; 

Szatmári et al., 2019; Senwo, 2021). Also, it contributes significantly to overall soil health, 

agriculture, climate change, and food security solutions (Yang et al., 2018). Excessive depletion 

of SOC can degrade soil fertility, reduce biomass productivity, adversely affect water quality and 

food security, and contribute to global climate change (Yang et al., 2018; Senwo, 2021). Reducing 
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SOC loss is therefore an effective strategy for food security enhancement and climate change 

mitigation, thereby achieving Sustainable Development Goals (SDGs) 2 and 13, respectively.  

1.2. Problem Statement 

Greater Gaborone has experienced significant population growth between 1981 and 2022, 

primarily driven by rural to urban migration. It had a population of 72,127 in 1981 and 429,293 in 

2022 (Figure 1). According to Cavrić & Keiner (2006), most of the rural-urban migration that takes 

place in the country is directed to Gaborone and its neighbouring settlements due to more available 

job opportunities, better infrastructure, social amenities, and public services. The growing 

population, combined with the unprecedented economic and industrial development (for example, 

housing, road construction, and other anthropogenic activities) in and around the city of Gaborone 

over the past decades, has resulted in an increasing proportion of land being converted into a built-

up area (replacing croplands and shrublands). These have also promoted the expansion of peri-

urban satellite settlements, resulting in areas previously occupied by agricultural lands and natural 

vegetation being converted into built-up areas (such as Phakalane) (Sebego & Gwebu, 2013). 

 

Figure 1. Population growth in Greater Gaborone Botswana (Sebego, 2014; Statistics Botswana, 

2014; Statistics Botswana, 2022) 
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Even though several studies on LCLU change detection have been conducted in Greater Gaborone 

over the past years, a study on the effects of the LCLU change on SOC stock has not been done, 

limiting our understanding of how LCLU change affects SOC stock in the area. Therefore, 

information about the nature of the LCLU change, where it occurs, and the rate at which it occurs 

is requisite. Furthermore, very little effort has been made to estimate the SOC stock under the 

different LCLU types in the greater Gaborone area, thereby, justifying the importance of this study. 

1.3. Objectives of the study 

The main objective of this study was to identify LCLU changes in the Greater Gaborone region of 

Botswana between 1988 and 2022 and to examine the effect of these changes on SOC stock. 

The specific objectives were as follows: 

1. To document the existing LCLU types in the area 

2. To detect and analyze current and future LCLU changes in the area 

3. To estimate the soil organic carbon stock where LCLU change has occurred 

4. To examine the effect of the LCLU change on SOC stock in the area 

1.4. Research questions 

The following questions were developed as a roadmap for achieving the specific objectives: 

1. What are the different LCLU types in the area? 

2. Where has the LCLU change occurred in the area? 

3. How much SOC is stored where an LCLU change has occurred, and how much SOC is 

stored where no LCLU change has occurred? 

4. Has the change in LCLU impacted SOC stock in the area? 

1.5. Research hypothesis 

1. Different LCLUs have different concentrations of SOC in the study area. 

2. Changes in LCLUs bring changes in SOC stock in the study area. 

1.6. Significance of the study 

The findings of this study provide a better understanding of how LCLU changes affect SOC stock 

in the Greater Gaborone region of Botswana. Understanding the effect is vital for policy 

formulation and implementation of appropriate land management interventions that increase SOC 
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storage and reduce carbon emissions, as recommended by the United Nations Framework 

Convention on Climate Change (UNFCCC, 2004). The findings of this study will also serve as a 

scientific database for land managers and policymakers. 

1.7. Structure of the Thesis 

This research thesis consists of six chapters, as described below: 

Chapter 1 provides an overview of the research. It also sets out the research problem, which leads 

to the formulation of research objectives and questions, as well as presents the importance of this 

study. 

Chapter 2 provides a brief review of the literature on LCLU changes, soil organic carbon stock, 

and key concepts used in the field of study. The chapter also highlights key trends and findings 

from international and regional studies where Geographic Information System (GIS) and remote 

sensing (RS) techniques were used to assess LCLU change, as well as stimulate future change. 

Some techniques or methods for detecting and forecasting future LCLU changes have been 

explored. Furthermore, the effects of LCLU change on soil organic carbon stock were explored, 

as well as different methods for determining soil organic carbon content. 

Chapter 3 provides a brief description of the study area. It also focuses on the application of remote 

sensing and GIS for detecting LCLU changes for the 1988, 2002 and 2022, as well as modelling 

future LCLUs for 2040. Furthermore, it focuses on the laboratory analysis of soil samples collected 

in and around Greater Gaborone for the determination of SOC and other soil-related properties 

that influence SOC accumulation in an ecosystem. 

Chapter 4 discusses the results obtained in Chapter 3. 

Chapter 5 concludes by summarizing the key findings of the research. It also provides 

recommendations and suggestions for further studies. 

Chapter 6 provides a list of references used in the study. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Land Cover Land Use Change: Concepts and Definitions 

Land cover and land use are closely related terms that are often used interchangeably, although 

they describe different aspects of the landscape (Munthali, 2020). However, there are differences 

of opinion regarding the distinction between these two terms. Several researchers have defined 

land cover as the observed physical or biophysical features covering the earth's surface, which 

includes vegetation, bare land, hard surfaces, water bodies, and artificial structures (Jansen & 

Gregorio, 2000; Brown & Duh, 2004; Chingombe et al., 2021). Natural scientists define the “term 

land use” by emphasizing the various useful aspects of human activities on land, such as farming, 

forestry, and man-made constructions. Turner et al. (1995) defined land use as "the manner in 

which biological attributes of land are manipulated." The term "land use," according to Jansen and 

Gregorio (2000), refers to how humans intend to use or exploit land cover for activities such as 

forestry, settlement, grazing, and agriculture while altering processes such as biogeochemical, 

hydrological, and biodiversity on the land's surface. Similarly, Chingombe et al. (2021) defined 

land use as "human modification of the earth's terrestrial surface for socioeconomic purposes such 

as construction, forestry, agriculture, and others." Therefore, LCLU change refers to qualitative 

changes or shifts in the structure and function of a given type of land cover or use, as well as 

quantitative changes in the area extent of that land cover or use (Seto et al., 2002). According to 

Lambin et al. (2003), LCLU change can be broadly classified into two types: conversion and 

modification. Conversion refers to a change from one LCLU category to another, whereas 

modification refers to the changes that affect the structure or function of the LCLU type (Mukete 

et al., 2017).  

Over the past decades, humans have increasingly taken a large role in the modification of the 

environment (Andualem et al., 2018). With the increasing number of developing technologies, 

man has emerged as a major and most powerful instrument of environmental change (Pandian et 

al., 2014). The induced changes in the environment result from complex interactions between 

human activities and the biophysical environment. Anthropogenic factors such as increasing 

population, urbanization, economic and industrial development, agricultural expansion, 

deforestation, and improper land use are largely known to contribute significantly to LCLU 

changes (Benzer, 2010).  
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2.2. Drivers of LCLU change 

Changes in LCLUs are mostly driven by a combination of socioeconomic, political, biophysical, 

and technological factors (also known as land use drivers), which drive and influence the 

development of any landscape at different spatial and temporal scales (Briassoulis, 2003; Dietzel 

et al., 2005; Kalaba, 2014). Land is static, and how it is used changes constantly in response to the 

drivers (Munthali, 2020).  

Drivers of LCLU change vary over time and so are their impacts as the local landscape changes 

(Lambin et al., 2003). The drivers of LCLU change are broadly divided into two categories: 

proximate and underlying drivers. Proximate (or direct) causes are related to the immediate actions 

taken by humans to meet their needs through land use, such as agricultural expansion, wood 

extraction, infrastructural expansion, and so on, that alter the physical state of land cover (Geist & 

Lambin 2002). The underlying (indirect or root) drivers, on the other hand, are related to 

fundamental socio-economic and political processes that push proximate causes into immediate 

action (Geist & Lambin, 2002). At the proximate level, change in LCLU could be explained by 

multiple factors rather than a single variable (Geist & Lambin, 2002). Proximate causes operate at 

the local level (individual farms, householders, or communities), whereas the sources of 

underlying causes are at regional and national levels such as districts, provinces, or countries 

(Lambin et al., 2003). Understanding the proximate and underlying drivers is critical for analyzing 

LCLU change, as well as developing realistic models for simulating future LCLUs and changes 

(Munthali, 2020). 

Studies from Sub-Saharan Africa (SSA) and other developing countries have shown that 

agriculture expansion, population growth, poverty, and the unsustainable use of natural resources 

are responsible for LCLU changes, especially in local communities surrounding the natural 

resource base (Haller et al., 2008). For instance, a study conducted by Brink and Eva (2009) 

revealed that floods, population growth, drought, globalization, climate change, economic 

development, and landslides are the prominent drivers of LCLU changes in the SSA. Chaturvedi 

(2004), in his study, identified the use of biomass as an energy source as an important variable 

contributing to LCLU changes in most developing countries. According to Feldmann & Marlis 

(2011), about 80 – 90% of the population in SSA uses firewood, charcoal, animal dung, and 

agricultural residues as fuel sources. In addition, high population growth rates coupled with 
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poverty and the lack of alternative economic opportunities lead to over-dependence and 

unsustainable use of natural resources base, resulting in natural resource degradation (Kangalawe 

& Lyimo, 2010; Ahmed et al., 2011). Furthermore, Brink & Eva (2009) reported that LCLU 

changes occurring in the SSA are due to globalization, droughts, population growth and floods.  

Most of the LCLU changes experienced globally result from a lack of clear and logical planning 

and regard for the environment (Jabbar & Zhou, 2011). Unplanned changes in LCLU are currently 

the most prominent issue. Failure to monitor LCLU changes can result in severe environmental 

challenges such as land fragmentation, which is most likely to cause climate change, biodiversity 

loss, and pollution, among others. Changes in LCLU can induce climate change because 

greenhouse gases are released into the atmosphere once vegetation is cleared, causing global 

warming and, eventually, climate change (Chingombe et al., 2021). Vegetation acts as a carbon 

sink as it absorbs CO2 produced by both natural and anthropogenic activities.  

Climate change is detrimental to both terrestrial and aquatic ecosystems. Most species become 

extinct or migrate to other areas once their habitats are lost. Furthermore, seasonal changes caused 

by climate change lead to poverty intensification, severely affecting the economy as more funds 

are channelled towards poverty alleviation at the expense of other developmental projects 

(Chingombe et al., 2021). Knowledge of LCLU change can help in the formulation of policies that 

strike a balance between conservation, conflicting uses, and development pressures. Therefore, it 

is necessary to continuously monitor LCLU changes at a micro-level (village or district) to mitigate 

the effects of improper land-use practices and to ensure sustainable natural resource planning and 

management. 

2.3. LCLU change detection 

Change detection refers to determining and/or describing changes in land cover or land use by 

observing them at different times (Munthali, 2020). It is done by quantitatively identifying the 

differences between multi-temporal data sets using remote sensing or GIS applications to 

understand the dynamics of the phenomena of interest. The LCLU change detection procedure, 

according to Lu et al. (2004) and Jensen (2005), consists of six major steps: the nature of change 

detection problems, the selection of suitable remotely sensed data, image preprocessing, image 

processing, or classification, the choice of change detection algorithms, and the evaluation of 
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change detection results. The LCLU change detection procedures and the main contents for each 

step, as recommended by Munthali (2020), are depicted in Figure 2. 

 

Figure 2. LCLU change detection procedure and corresponding main contents (Munthali, 2020).   

Change detection aims to compare the spatial representation of two points in time by controlling 

all variances caused by differences in the variables of interest (Munthali, 2020). Accurate detection 

of changes in features on the earth’s surface provides a foundation for a better understanding of 

the relationships between humans and natural phenomena to better manage and use natural 

resources (Munthali, 2020). Lu et al. (2004) suggested that a sound change detection study should 

provide the following indispensable information: the area of change and change rate, the spatial 

distribution of changed types, the change trajectories of land-cover types, and an accuracy 

assessment of the detection results. 
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The major source of data for change detection is geographic, and it is usually in digital formats, 

such as satellite imagery, analogue format (older aerial photos), and vector format (e.g. feature 

maps). Remotely sensed data such as traditionally Landsat, Satellite Probatoire d'Obsersation de 

la Terre (SPOT), radar, and Advanced Very High Resolution Radiometer (AVHRR) (Munthali, 

2020), but recently, more high resolution satellite datasets have become available such as the 

Sentinel 2A. These are primary data sources for different LCLU change detection applications due 

to their repetitive data acquisition, synoptic view, and digital format for computer processing.  

2.3.1. Image Pre-processing  

Image pre-processing is the preparatory phase designed to improve the quality of image features 

or data for further processing or analysis (Munthali, 2020). Image pre-processing procedures 

include radiometric, atmospheric, geometric, and topographic corrections. Radiometric correction 

is performed to remove any unwanted disturbances or distortions in image data caused by satellite 

optical sensor limitations, changes in scene illumination, atmospheric conditions, and viewing 

geometry (Lu et al., 2004). Atmospheric correction removes the scattering and absorption effects 

of the atmosphere in order to obtain surface reflectance (Du et al., 2002). The atmospheric 

conditions at the different acquisition dates affect the spectral signatures of the same invariant 

objects (Vicente-Serrano et al., 2008; Chander et al., 2009). Therefore, a proper atmospheric 

correction method is required to convert raw data to surface reflectance.  

2.3.2. Image Processing and Classification 

Image classification is the process of categorizing pixels in an image into a smaller number of 

individual LCLU classes based on reflectance values (Jensen, 2005; Campbell & Wynne, 2011). 

Furthermore, it entails extracting different LCLU categories from raw remotely sensed digital 

satellite data (Weng, 2002). In a classification process, a classifier identifies and maps the patterns 

associated with each pixel in the image.  

Image classification consists of two stages or steps (Mather, 2004). First, the user decides on the 

number and type of categories that will be used to describe the land cover. The LCLU class can be 

forest, water, pasture, or bare land. Secondly, numerical labels are assigned to pixels based on their 

properties using a decision-making procedure known as a classification rule or a decision rule. The 

images are classified using a sample set generated from training samples. These training samples 
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are representative of the desired LCLU classes and are determined based on ground truthing, the 

researcher's personal experience, and prior knowledge of the study area (Magidi, 2010). 

Classification can be carried out using either a group of pixels (spatial or neighborhood classifiers) 

or a single pixel (spectral or point classification) (Campbell & Wynne, 2011; Lillesand et al., 

2008). The most commonly used method for image classification is the per-pixel-based approach 

(Blaschke et al., 2000). Per-pixel-based approaches are less costly and easier to program than 

spatial classifiers (Campbell, 2002). 

The classification process for each pixel can be either supervised or unsupervised (Foody, 2002; 

Munthali, 2020). In supervised classification, the analyst identifies and assigns various land cover 

or land use types to predetermined classes. Unsupervised classification, on the contrary, entails 

using a computer algorithm to identify and group areas with similar spectral characteristics 

(Munthali, 2020). Unlike unsupervised classification, supervised classification requires the analyst 

to have prior knowledge of the object or features in the study area (Jensen, 2005). The most 

commonly used supervised classification algorithms are Parallel-piped, Maximum Likelihood, and 

Minimum Distance to Means (Campbell & Wynne, 2011; Eastman, 2009; Lillesand et al., 2008). 

Parallel-piped classification uses a set of signature files to classify remotely sensed data. It is based 

on a set of lower and upper reflectance threshold values determined for each band. In this method, 

the pixel must have reflectance within this range for each band considered before it can be assigned 

to a specific class. This approach is less accurate and least precise (Eastman, 2009).  

Maximum Likelihood Classification is based on a probability density function associated with 

specific training sites. Pixels are assigned to the most likely class based on their likelihood of 

belonging to each of the signatures under consideration. The Maximum Likelihood Classifier is 

also known as a Bayesian classifier because it can incorporate prior knowledge using Bayes' 

Theorem (Eastman, 2009). Prior knowledge is expressed as the probability that each class exists. 

It can be specified as a single value that applies to all pixels. 

The Minimum Distance to Means classifier uses information from a set of signature files to classify 

remotely sensed data. In this approach, a signature is classified based on the mean reflectance of 

each band, and pixels are assigned to the class with the mean that is closest to the pixel's value 

(Eastman, 2009). This method is slower than parallel-piped classification and is often used when 
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the number of pixels used to define signatures is small or when training sites are poorly defined 

(Eastman, 2009). Nowadays, there is a concerted effort to use machine learning image 

classification techniques such as Artificial Neural Networks and Random Forest Classifiers 

(Munthali, 2020). 

2.4. Change Detection Techniques  

Over the past decades, the availability of large archived data sets has resulted in the development 

and evaluation of numerous digital change detection techniques and methods for analyzing and 

detecting LCLU changes (Munthali, 2020). These techniques and methods have been extensively 

reviewed and provided with excellent descriptions and comprehensive summaries (Williams et al., 

2006; Haque & Basak, 2017). Different change detection methods generate different change 

detection maps depending on the method used (Bekalo, 2009). Therefore, the selection of an 

appropriate method for change detection is essential for producing accurate results because digital 

change detection is heavily influenced by the temporal, spatial, spectral, and thematic resolutions 

of remotely sensed data (Lu et al., 2004).  

Change detection methods are grouped into seven (7) categories: algebra, transformation, 

classification, advanced models, GIS approach, visual analysis, and other approaches. The most 

common change detection techniques or approaches, along with examples, are summarized in 

Table 1.  

Studies have shown that combining two change detection techniques like Image Differencing and 

Principal Component Analysis (PCA), Vegetation Index Differencing (VDI) and PCA, or PCA 

and Change Vector Analysis (CVA), improves the results of the change detection (Munthali, 

2020). Image differencing, image rationing, PCA, CVA, and Post Classification Comparison 

(PCC) are the most commonly used change detection methods (Shaoqing & Lu, 2008; Bekalo, 

2009). Pre-classification techniques such as Image differencing, PCC, PCA, and CVA are the most 

accurate change techniques because they are straightforward, effective for identifying and locating 

change, and simple to implement (Munthali, 2020).  
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Table 1. LCLU Change detection techniques. 

Technique/ Approach Examples of method 

Algebra  ▪ Image differencing  

▪ Image regression  

▪ Image rationing  

▪ Vegetation Index Differencing  

▪ Change Vector Analysis 

Transformation ▪ Principal Component Analysis (PCA)  

▪ Tasselled Cap (KT)  

▪ Gramm-Schmidt (GS)  

▪ Chi-square 

Classification  ▪ Post-Classification Comparison  

▪ Spectral-Temporal Combined Analysis 

▪ Expectation-maximization (EM) detection  

▪ Unsupervised Change Detection  

▪ Hybrid Change Detection  

▪ Artificial Neural Networks (ANN) 

Advanced models ▪ Li-Strahler Reflectance Model Spectral Mixture Model  

▪ Biophysical Parameter Method 

Visual analysis ▪ Visual interpretation 

Other change detection 

techniques 

▪ Measures of spatial dependence  

▪ Knowledge-based vision system  

▪ Area production method  

▪ Combination of three indicators: vegetation indices, land 

surface temperature, and spatial structure  

▪ Change curves  

▪ Generalized linear models  

▪ Curve-theorem-based approach  

▪ Structure-based approach  

▪ Spatial statistics-based method 

Source: (Munthali, 2020) 

2.4.1. Image Differencing  

Image differencing change detection technique is the process of obtaining LCLU change results 

by subtracting the digital number (DN) of a pixel in the first-date image from the second-date 

image (Lu et al., 2004; Theau, 2012; Alqurashi & Kumar, 2013), as shown in equation (1). 

 𝑫𝑿𝒊𝒋
𝒌 = 𝑿𝒊𝒋

𝒌 (𝒕𝟐) −  𝑿𝒊𝒋
𝒌 (𝒕𝟏)       (1) 

Where 𝐷𝑋𝑖𝑗
𝑘  is the difference between pixel value x located in row i and column j for band k 

between acquisition date 1 (t1) and date 2 (t2).  

In this technique, unchanged areas have a pixel value of 0, whereas areas that have changed 

significantly have positive or negative pixel values (Lu et al., 2004). Image differencing is a widely 

used change detection technique because it is straightforward and the results are 
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easily interpreted (Lu et al., 2004; Podeh et al., 2009). The major constraint with this technique is 

figuring out the threshold values for the changed and no-changed areas (Shaoqing & Lu, 2008; 

Munthali, 2020). Another challenge is that the two images being compared should be normalized 

to neutralize any changes that are superficial, such as atmospheric artefacts. The technique 

provides adequate information about the change itself.  

2.4.2. Image Rationing  

Change detection by Image Rationing is accomplished by calculating the ratio of the DN values 

(as shown in equation 2) of corresponding pixels in two images taken at different times with the 

same number of bands (Hafez 2011). 

 

𝑫𝑿𝒊𝒋
𝒌 =  

 𝑿𝒊𝒋
𝒌 (𝒕𝟏)

𝑿𝒊𝒋
𝒌 (𝒕𝟐)

  
    (2) 

 

Where 𝐷𝑋𝑖𝑗
𝑘  is the ratio between pixel value x located at row i and column j for band k between 

acquisition date 1 (t1) and date 2 (t2). 

In this method, pixels with no change values have the same value of 1 for both dates, and changes 

are represented by pixels with values less than or greater than 1 (Theau, 2012; Alqurashi & Kumar, 

2013). The effects of radiance change, shadows, image noise, and the angle of the sun are reduced 

when image rationing is used (Lu et al., 2004). Some researchers, however, argue that because it 

is difficult to select threshold values, this method cannot be used to analyze LCLU change. Chi et 

al. (2009) used image rationing and post-classification comparison (PCC) to assess urban dynamic 

changes in Southeastern China and found that the post-classification comparison (PCC) method 

produced better results than image rationing. 

2.4.3. Change Vector Analysis   

Change vector analysis (CVA) is a multivariate change detection technique that processes the 

image data in all dimensions (spectral and temporal) and represents both the magnitude and 

direction of the change (Munthali, 2020). The direction provides information about the nature of 

change, and the magnitude provides information about the level of change. The total magnitude 

per pixel is calculated by determining the Euclidean distance between endpoints in n-dimensional 

change space, as shown in equation (3). 

 
𝑪𝑴𝒑𝒊𝒙𝒆𝒍 = ∑ (𝑿𝟐 −  𝑿𝟏)𝟐

𝒏

𝒊=𝟏
 

    (3) 

 

where X1 and X2 are date 1 and date 2 of the pixel value in i band 



 

28 
 
 

Change vector analysis is difficult to implement, but it can provide information about changes in 

all data layers rather than just selected bands (Theau, 2012; Alqurashi & Kumar, 2013). 

2.4.4. Principal Component Analysis 

Principal component analysis (PCA) is a technique that transforms a correlated dataset into a 

simpler dataset for easy interpretation (Alqurashi & Kumar, 2013). It converts the data into 

variables representing the essential information from the original dataset (Jensen, 2005). The PCA 

is done in two ways. The first step entails combining the datasets of each image into a single file 

and analyzing the image components separately. Second, the second image dataset is subtracted 

from the first image dataset. (Lu et al., 2004). After performing PCA, the no-change areas are 

mapped in the first component, and the changed areas are mapped in the last component (Theau, 

2012). The variance-covariance matrix (C) of the multi-band images is calculated as: 

 
𝑪 =

∑ (𝑿𝒋 − 𝑴)(𝑿𝒋 − 𝑴)𝑻𝒏
𝒊=𝟏

𝒏 − 𝟏
 

    (4) 

 

Where M and X are multi-band image mean and individual pixel value vectors, respectively, and 

n is the number of pixels. 

PCA reduces data redundancy and dimensionality in remote sensing datasets by assuming that 

change areas are not highly correlated (Lillesand et al., 2008). However, the method necessitates 

the selection of thresholds for detecting the change. Furthermore, PCA results are challenging to 

interpret and label, and they do not provide a complete matrix of change class (Lu et al., 2004). 

2.4.5. Post Classification Comparison  

Post Classification Comparison (PCC), an approach used in this study, is the most common, useful, 

and adaptable detection method for extracting LCLU change information from images with 

varying spatial and spectral resolutions acquired by different sensors (Alphan et al., 2009; Aguirre-

Gutiérrez et al., 2012; Kindu et al., 2013). The technique entails detecting changes in the land 

cover type and creating maps showing the complete change matrix by coding the spectral 

classification results for time one and time two using a pixel-by-pixel or segment-by-segment 

comparison (Munthali, 2020). In this method, the analyst defines the land cover classes. The PCC 

technique employs both Supervised and Unsupervised classification algorithms. In PCC, the 

classification of individual pixels reduces atmospheric, radiometric, geometric, and sensor 

differences between the two dates (Alqurashi & Kumar, 2013; Munthali, 2020). However, time 
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and expertise are required to perform the PCC, and the quality of the classified image for each date 

influences the final accuracy. 

2.5. Accuracy Assessment of Classified Images 

The level of agreement between image classification and ground reference data is referred to as 

classification accuracy (Campbell & Wynne, 2011). Classification accuracy allows us to 

understand classification errors or classification results better. A classified error occurs when there 

is a mismatch between the classified data on the map and the actual class on the validation data in 

the field or ground reference data (Foody, 2008). Classification accuracy is done using an Error 

matrix, also known as the Confusion matrix (Campbell & Wynne, 2011). The Error matrix 

compares the relationship between known referenced data and the corresponding automated 

classification results on a category-by-category basis. The Error matrix calculates the overall 

accuracy, user’s accuracy (Commission error), producer’s accuracy (Omission error) and the 

Kappa coefficient.  

The overall accuracy (OA) describes how well the classified map represents the features on the 

ground (Foody, 2002). It is computed by dividing the total number of correctly classified pixels 

(the sum of the major diagonal) by the total number of assessment points (Tempfli et al., 2009). 

Producer accuracy (PA) describes how well the map producer identified all the LCLU types on 

the maps using remotely sensed data. The user’s accuracy (UA) describes how well a person using 

the map will locate the different LCLU classes on the ground. Kappa coefficient (KC) measures the 

difference between the actual and chance (random) agreement between the map and validation 

data on the ground (Congalton, 2001).  

Kappa coefficients are measured on a scale of 0 to 1, and a value greater than 0.80 (80%) represents 

strong agreement and good accuracy; between 0.40 and 0.80 (40 - 80%) represents moderate 

agreement; and less than 0.40 represents poor agreement (Molla et al., 2018). The higher the 

classification accuracy, the more useful the classified map is for land administrators and land-use 

planners. Below are equations for computing OA, UA, PA, and KC: 

 
𝑶𝑨 =

𝑺𝒖𝒎 𝒐𝒇 𝒅𝒊𝒂𝒈𝒏𝒂𝒍 (𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅)

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒂𝒎𝒑𝒍𝒆
 × 𝟏𝟎𝟎 

    (5) 
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𝑼𝑨 =

𝑺𝒂𝒎𝒑𝒍𝒆𝒔 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒊𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅 𝒊𝒏 𝒕𝒉𝒆 𝒓𝒐𝒘

𝑹𝒐𝒘 𝒕𝒐𝒕𝒂𝒍
 × 𝟏𝟎𝟎  

    (6) 

 

 
𝑷𝑨 =

𝑺𝒂𝒎𝒑𝒍𝒆𝒔 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒊𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅 𝒊𝒏 𝒕𝒉𝒆 𝑪𝒐𝒍𝒖𝒎𝒏

𝑪𝒐𝒍𝒖𝒎𝒏 𝒕𝒐𝒕𝒂𝒍
 × 𝟏𝟎𝟎 

    (7) 

 

 
𝑲𝑪 =

𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 (𝑷𝒐) − 𝑪𝒉𝒂𝒏𝒄𝒆 𝒂𝒈𝒓𝒆𝒆𝒎𝒆𝒏𝒕 (𝑷𝒆)

𝟏 −  𝑪𝒉𝒂𝒏𝒄𝒆 𝒂𝒈𝒓𝒆𝒆𝒎𝒆𝒏𝒕 (𝑷𝒆)
 × 𝟏𝟎𝟎 

    (8) 

 

2.6. Modelling of LCLU Changes  

The process of land cover and land use modelling entails simulating LCLU change using sample 

datasets to establish probabilistic transition rules that control how landscapes change over time 

(Bone & Dragicevic, 2009). In the 1960s, studies on LCLU modelling were conducted from a 

disciplined approach. Due to advancements in earth observation techniques such as GIS and RS, 

these local, regional, and global studies have taken on a multidisciplinary perspective (Parker et 

al., 2003; Chaikaew, 2019). Models for predicting LCLU patterns and changes have been 

developed and used depending on the goals (conversion, intensification, management) or the 

discipline (geography, natural science, economics, urban planning, regional science, and 

geographic information science) (Schaldach et al., 2011; Grinblat et al., 2015). According to 

Verburg et al. (2004), there is a growing interest in LCLU change modelling given that LCLU 

affects livelihoods, biodiversity and global climate. Therefore, different LCLU change models 

have been developed to meet specific needs and address when, where and why LCLU occurs 

(Bhattacharjee & Ghosh, 2015).  

Based on Bhattacharjee and Ghosh's (2015) findings, LCLU models can be used:  

▪ To provide decision support in a variety of decisions, including the development and 

implementation of effective policies and management strategies for sustainable natural 

resource management, use, and conservation, which necessitates knowledge and 

understanding of future LCLU patterns and changes; 

▪ To describe the spatial and temporal relationships between the drivers and resulting 

patterns of LCLU changes;  
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▪ To predict or forecast future configurations of LCLU patterns under different scenarios of 

biophysical change, such as climatic and socio-economic change;  

▪ As an instrument to assess the impact of past or future activities in the environmental and 

socio-economic spheres;  

▪ To prescribe “optimum” patterns of LCLU for sustainable use of land resources and 

development;  

▪ To evaluate a set of land use alternatives that have to be evaluated based on specific criteria.  

According to Parker et al. (2003), understanding the drivers of LCLU changes requires linking 

landscape observations at spatial and temporal scales to empirical simulation models.  

Over the past decades, a diverse range of LCLU models from different disciplines and backgrounds 

have been developed. Examples of some of these models include the Markov Chain Model, 

Cellular Automata (CA), Cellular Automata–Markov model (CA–Markov), Artificial Neural 

Network (ANN), Logistic Regression (LR), Conversion of Land Use and its Effects (CLUE), and 

Modules for Land Use Change Evaluation (MOLUSCE) (Hossain & Moniruzzaman, 2021; 

Kamaraj et al., 2022).  

According to Verburg et al. (2008), no single model is capable of considering all the processes of 

LCLU changes at different scales; thus, integrated land-use models that combine one or two 

models are most often preferred for simulating and predicting LCLUs. Among these models, the 

MOLUSCE was used in this study for simulating and predicting future LCLUs because of its 

ability to estimate a pixel's current condition based on its initial state, surrounding neighborhood 

effects, and changeover laws (Kamaraj et al., 2022). Furthermore, it is user-friendly and capable 

of accurately depicting non-linear spatial stochastic LCLU change processes (Saputra & Lee, 

2019). 

2.7. Soil Organic Carbon Stock 

2.7.1. Soil Organic Carbon Content  

Soil is the largest carbon pool in the terrestrial biosphere, containing approximately 2344 Pg of 

organic carbon globally (Stockmann et al., 2013). It is one of the most important components of 

the biosphere, providing essential ecosystem services and processes that benefit humans (Ogle et 

al., 2005). Soil plays a vital role in mitigating climate change and regulating the global carbon 
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cycle (Muktar et al., 2018). It acts as a net source or net sink of atmospheric CO2 (Lal et al., 2012; 

Anokye et al., 2021). Organic carbon stored in the soil represents 62% of the global carbon pool 

(Senwo, 2021), and minor changes in SOC storage can influence atmospheric CO2 concentrations 

(Stockmann et al., 2013; Gebrehiwot, 2021). In addition, SOC is one of the most important 

properties of the soil that shows not only temporal but spatial variability, both horizontally across 

different LCLUs and vertically within the soil profile (Yao et al., 2020). This can be observed on 

the Global Soil Map (Figure 3), which depicts the amount of SOC stock in the 30 cm soil profile 

across different regions of the globe (Hiederer, 2011). 

 

Figure 3. Global Soil Organic Carbon stock (t ha-1) for combined topsoil and subsoil layer 

(Hiederer and Köchy, 2011). 

The soils of Botswana, located in the Southern Hemisphere, are characterized by a low 

concentration of organic carbon content, ranging from 0 – 50 t/ha, as indicated on the SOC map 

(Figure 3). This is consistent with the results obtained by the Food and Agricultural Organization 

of the United Nations (FAO), the United Nations Development Program (UNDP), and the 

Government of Botswana during the Botswana Soil Mapping and Advisory Service project in 1990 

(GoB, 1990). The results also revealed spatial variation in SOC content across districts in 

Botswana. In the South East District, for instance, the amount of SOC content within the 30 cm 

soil profile varies substantially across different geographical locations (Table 2). The sampled 

points are depicted in Figure 4. The variation in SOC across different geographical locations can 

be attributed to the vegetation cover type, soil types, soil pH and soil texture in the area. The soil 

pH in the area ranges from 5.5 to 7.9, while the SOC content ranges from 0.1 to 0.8 % (Huesken 

et al., 1989). 
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Table 2. Variation of SOC content in different locations in the South East District in 1989 

ID Latitude Longitude 
Carbon 

(weight %) 
pH 

R-0011 -24.8912 25.784 0.4 6.8 

L-0053 -25.1431 25.636 0.5 7.9 

R-0004 -24.8186 25.838 0.2 7.9 

*R-0007 -24.7703 25.837 0.1 6.0 

R-0015 -24.9514 25.696 0.8 7.6 

R-0020 -24.8028 25.743 0.1 4.9 

*G-0518 -24.6694 26.156 0.3 5.9 

L-0902 -25.2444 25.696 0.6 5.9 

L-0008 -25.0847 25.779 0.4 5.5 

L-0091 -25.4236 25.574 0.6 6.0 

R-0024 -24.8139 25.785 0.2 5.3 

*G-0901 -24.5611 25.944 0.2 5.9 

L-0004 -25.0425 25.761 0.5 5.5 

Source: Botswana Soil Mapping and Advisory Service project (FAO/BOT/85/011) (Huesken et al., 1989) 

 

Figure 4. Sampling locations for SOC content in the South East District of Botswana in 1989 (Huesken et 

al., 1989) 
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2.7.2. Soil Organic Carbon Sequestration in Different LCLU Types 

Carbon sequestration is the process of capturing and storing atmospheric CO2 in a stabilized form. 

It is one of the techniques for reducing CO2 levels in the atmosphere with the goal of mitigating 

climate change. The CO2 is captured through the process of photosynthesis and stored in the soil 

through the decomposition of plant residues and organic matter (Izaurralde et al., 2000). According 

to the IPCC (2007), forests can save 5,380 Mt CO2 per year, and forest soils can absorb about 70% 

of atmospheric CO2, depending on the site's history and the LCLU pattern (Wolde et al., 2014). 

Agricultural land stores a small amount of SOC compared to other land uses (Phuntsho, 2016). 

They, however, have the potential to sequester more CO2 from the atmosphere through improved 

land management practices (Phuntsho, 2016). The quantity and quality of organic matter input, 

decomposition rate, and land management strategies all play a vital role in determining the carbon 

sequestration capacity of agricultural lands (Bayer et al., 2006; Cochran et al., 2007). This is 

because proper agricultural land management (such as the use of farmyard manure) can largely 

increase soil carbon storage (Mosier et al., 2003). Proper land management practices, such as 

planting trees along the edges of agricultural fields, can increase carbon storage under agricultural 

land (Wani et al., 2012). Tilled soil under agricultural land has low SOC stock due to increased 

carbon emissions, contributing to increasing levels of atmospheric CO2 and climate change. A 

study conducted by Schlesinger (1999) on carbon sequestration potential in agricultural lands, for 

example, revealed a significant SOC stock variation in tilled (1,250 g C m/2) and untilled soil 

(1,740 g C/m2). 

Badgery et al. (2014) reported that temporal changes in SOC stock in different LCLU types occur 

in the topsoil. According to Batjes (1996), the top 1m soil profile stores approximately 1,500 Gt 

of SOC and about half of it is present in the top 30 cm. This is because it is the most biologically 

active layer of the soil (Drayton & Chandler, 2016). This also explains why the concentration of 

SOC decreased exponentially with depth, as reported by several studies (Soussana & Lemaire, 

2014; Orgill et al., 2014). Also, it is the depth recommended by the IPCC (2003) for SOC stock 

assessment for national or global carbon accounting. Changes in SOC stock in deeper soil layers 

often appear several years (typically more than ten years) following land use/management (Knops 

& Bradley, 2009; Stahl et al., 2016).  
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2.7.3. Factors Influencing SOC Stock in Different LCLU Types 

The amount of SOC stock in any given terrestrial ecosystem is influenced by several factors, such 

as vegetation cover type, climatic conditions, soil texture, soil pH, and land management practices 

(Zimmermann, 2013; Phuntsho, 2016).  

Vegetation cover impacts carbon dynamics by influencing soil respiration, carbon flux, and carbon 

fixation (Phuntsho, 2016). Vegetation cover type is regarded as one of the important factors 

influencing SOC variation because it is a major source of carbon (Dar & Sundarapandian, 2015). 

Furthermore, the amount of SOC stored is also influenced by the rate of leaf deposition, 

temperature, moisture, and soil microorganisms (Phuntsho, 2016). 

Climate parameters such as temperature and precipitation also influence SOC accumulation. As 

temperature rises, the amount of SOC in the soil decreases. Shrestha et al. (2004) reported that 

temperature increase reduces SOC stock despite higher primary productivity potentials. This is 

because the decomposition rate increases with temperature rise, thereby lowering the SOC storage 

(Phuntsho, 2016).  

High soil moisture content highly favours SOC accumulation (Phuntsho, 2016). However, areas 

with frequently occurring anaerobic conditions due to high precipitation and waterlogging, such 

as wetlands and peatlands, tend to lower SOC decompositions due to the inhibition of microbial 

activity (Zimmermann, 2013). 

Soil pH regulates microbial activity as well as turnover rates. Higher acidity generally inhibits 

microbial activity and reduces mineralization, resulting in higher accumulations of SOC 

(Kemmitt et al., 2006). Zhou et al. (2019) reported that low pH favours SOC accumulation 

because the bacteria or organisms most responsible for breaking down the organic matter 

experience a sharp drop in activity once the pH falls below 6.0.  

Land use and soil management practices significantly impact SOC concentration and carbon flux 

(Ghimire et al., 2019). According to studies, the main factor governing SOC content is the land 

use type, which alters soil properties and the supply of soil nutrients (Dejun et al., 2012; Muktar 

et al., 2018; Yan et al., 2012). Several studies have found that converting natural ecosystems to 

managed systems results in a significant loss in SOC (Fan et al., 2016; Guillaume et al., 2015; 

IPCC, 2013; Yihenew & Getachew, 2013). Similarly, empirical studies have reported a loss in 
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SOC ranging from 2.3 to 8.0 t/ha in a year following land use conversion (Assefa et al., 2017; 

Kassa et al., 2017). However, several other studies have reported an increase in SOC stock due to 

switching from non-tree to agroforestry systems (Priano et al., 2018). Intensive use of mineral 

fertilizer in agricultural land tends to reduce SOC accumulation while increasing crop yield in the 

short run (Shrestha et al., 2004). Also, the use of no-tillage techniques improves SOC stock. 

Generally, sustainable land management practices improve SOC storage.  

Soil texture influences SOC accumulation through its ability to stabilize soil organic matter 

(Baldock & Skjemstad, 2000). Fine-textured soil has more SOC content than coarse-textured soil 

due to its capacity to store water, retain more nutrients, and provide a better soil structure for plant 

growth (Dlamini et al., 2014). However, coarse-textured soils have low SOC content due to the 

absence of protection provided by clay particles (Chan et al., 2010).  

2.7.4. Effects of LCLU Change on SOC Stock 

The present global SOC stocks show a declining trend in all regions due to changes in LCLU 

practices (Gelaw et al., 2014; Yang et al., 2018). Several studies have reported that SOC stock 

either increases or decreases following an LCLU change. For example, in China, Luo et al. (2014) 

investigated soil carbon storage and water consumption patterns in an Oasis-desert ecotone facing 

land use change and found that cropland expansion led to a significant reduction in SOC stock. 

Also, Yang et al. (2018) investigated the effects of land use change on soil carbon storage in the 

Shi Yang river basin in China over the last 40 years and found that land use changes in the area 

resulted in a loss of 3.89Tg (Teragram) of soil carbon storage between 1973 and 2012. 

Furthermore, Sharma et al. (2019) assessed the effect of land use change on SOC stock in the semi-

arid region of Rajasthan, India and found a net loss of 11.05 MtC between 1993 and 2014.  

Soil carbon pools may become "sources" of atmospheric CO2 if LCLU changes continue. For 

instance, it was estimated that the release of carbon to the atmosphere due to these reasons from 

the world’s soils is at 40–50 Pg C per year, and over the last 150 years, the reduction in SOC has 

contributed 6–8% of the rise in atmospheric CO2 (Yang et al., 2018). Rising levels of atmospheric 

CO2 contribute to climate change (Anokye et al., 2021). Climate change effects are easily noticed 

in changing soil carbon storage, net primary productivity, and soil respiration (Yang et al., 2018). 

Other noticeable impacts of climate change include fluctuations in temperatures and precipitation 
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regimes, glacier retreat, sea-level rise, and low crop yields (Pattarawan, 2016).  SOC storage is 

related to soil quality and continued carbon loss from soil reduces land productivity on a local 

scale while exacerbating the greenhouse effect on a global scale. Therefore, appropriate land 

management practices that increase SOC storage need to be implemented to reduce SOC stock 

losses.  

2.7.5. Methods for Estimating SOC Stock 

Several methods for determining SOC content have been developed and used over the past 

decades. The most widely used methods include the Walkley and Black Method (Walkley & 

Black, 1934), Loss-on-ignition (Santisteban et al., 2004), geospatial method (Kumar et al., 2016), 

geostatistical method (Baggaley et al., 2016), visible near infrared (Vis-NIR) (Peng et al., 2015), 

and Isotopic analysis (Nordt et al., 1998), spectroscopic technique (FOA, 2019).  

In the determination of SOC content using dry combustion or the elementary method, 20 g of soil 

is pre-treated with phosphoric acid (H3PO4) for 12 hours to remove any carbonates that may be 

present (FAO, 2019). A fraction of the sample is then combusted at 900 °C, and the SOC 

concentration is determined based on the amount of CO2 released from the sample (Phuntsho, 

2016). Compared to other methods, the dry combustion method is relatively more accurate and is 

widely used for determining SOC concentration. 

The loss on ignition (LOI) method requires a muffle furnace to measure SOC content. The method 

is based on the differential thermal effects on the soil samples. LOI measures the weight loss of 

the soil sample after drying it at 550 °C (Santisteban et al., 2004) for a couple of hours.  

The Walkley-Black method (the method used in this study) is a wet chemistry method (Donovan, 

2013). This method is as accurate as the Elementary method except for soils with low Organic 

Carbon. In contrast to the other methods, this method is more accurate, less expensive and simpler 

(Phuntsho, 2016), explaining why it was adopted in this study. 

The spectroscopic technique involves the use of electromagnetic radiation to characterize the 

physical and biochemical composition of a soil sample. It is the fastest method to determine SOC 

content. In this method, light is shone on a soil sample, and the properties of the reflected light 
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(visible-near-infrared, near-infrared, or mid-infrared) are representatives of molecular vibrations 

that respond to the mineral and organic composition of soils (FAO, 2019).  

The geospatial method estimates soil organic carbon content using the bare soil index (BSI) or 

normalized difference vegetation index (NDVI) derived from remote sensing data (Kumar et al., 

2016). The use of spectral indices derived from remote sensing data for SOC stock quantification 

came from the use of wavelengths in Vis-NIR spectroscopy. To estimate SOC stock using the 

NDVI approach, an NDVI map is generated using the near-infrared and red bands of the remotely 

sensed data as follows:  

 
𝑵𝑫𝑽𝑰 =

(𝑵𝑰𝑹 − 𝑹𝒆𝒅)

(𝑵𝑰𝑹 + 𝑹𝒆𝒅)
 

    (9) 

 

Where NIR and Red belong to the Near-Infrared and red bands of the satellite image, respectively. 

NDVI value ranges from -1 to 1. Areas with high NDVI values indicate healthy vegetation, while 

those with low NDVI values represent bare land or water bodies (Kumar et al., 2016). Since SOC 

influences biomass productivity, it suggests that areas with healthy vegetation have higher SOC 

contents than areas with no vegetation cover.  

However, to determine SOC content using the BSI approach, the following equation (10) is used 

to generate the BSI map for the study area (Kumar et al., 2016). The BSI value also ranges from -

1 to 1. High BSI values indicate the area has more open or bare soil, whereas low BSI values are 

associated with soil covered with vegetation (Kumar et al., 2016). 

 
𝑩𝑺𝑰 =

[(𝑩𝟓 + 𝑩𝟑) − (𝑩𝟒 + 𝑩𝟏)]

[(𝑩𝟓 + 𝑩𝟑) + (𝑩𝟒 + 𝑩𝟏)]
 

    (10) 

 

Where BSI is the bare soil index, B1 is the Blue band, B3 is the Green band, B4 is the Red band, 

and B5 is the Near-infrared band.  

Using satellite imagery is a less costly approach but requires previous studies on soil properties 

(Peng et al., 2015). The geospatial method was one of the possible methods to be adopted in this 

study, but due to limited data and the challenges in distinguishing different LCLU types in the 

generated NDVI or BSI map of the study area due to spectral ambiguity, the geospatial approach 
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was not adopted. Even though the geospatial and geostatistical methods are used to map large 

areas, the traditional method, which involves laboratory analysis, continues to serve as a source of 

reference (Tsao, 2017), an approach used in this study. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1. Description of the Study Area 

Greater Gaborone lies between the Longitudes 250 45' 17.76" E and 260 11' 01.04" E and Latitudes 

240 41' 15.44" S and 240 42' 45.96" S. It covers a surface area of 669 km2 and has an average 

elevation of approximately 1000 m above mean sea level. To the east, the area includes the tribal 

villages of Tlokweng, Oodi, and Modipane; to the west, it includes Mogoditshane and Gabane; to 

the south, it includes Mokolodi; and to the north, Gaborone is bordered by the Bakgatla tribal land 

(Figure 5). These peri-urban villages have grown with the influence of the city and have attained 

the status of its suburbs, even though their land tenure remains tribal (Sebego, 2014). Historically, 

significantly large areas of present-day Gaborone used to be freehold farmland. For example, the 

area west of the railway line (now known as Gaborone – West) and Broadhurst did not exist until 

the early 1980s, when the government bought freehold farms in those areas to make way for 

development (Sebego, 2014). Private landholders have also contributed to the expansion of the 

city. Some farms have been developed into huge townships like Pakalane Estates, Gaborone North, 

and Mokolodi. These areas are now fully developed suburbs, well established with all the social 

amenities that go along with modern residential development. The population of the villages had 

grown rapidly between 1988 and 2022 (Table 3). The development of such peri-urban villages 

means that land is constantly being converted from its natural state to urban status.  

Table 3. Population figures for Gaborone and surrounding villages 

Location 1981 1991 2001 2011 2022 

Gaborone 59 657 133 468 186 007 231 592 246 325 

Tlokweng 6 657 12 501 21 133 36 323 55 508 

Oodi - 2 282 3 440 5 687 10 257 

Modipane - - 2 508 3,197 7 945 

Mokolodi - - 507 624 1 242 

Mogoditshane 3 125 14 246 38 816 57 637 88 006 

Gabane 2 688 5 975 10 399 15 237 20 010 

 Total population 72 127 168 472 262 810 350 297 429 293 

Source: (Sebego, 2014; Statistics Botswana, 2014, 2022) 

The climate of the study area is semi-arid, characterized by a hot, wet season (November–April), 

a long, dry season (May–October), and a winter season (May–August). The average temperature 

of the area is 20.6 °C, with average minimum and maximum monthly temperatures of 12.8 and 
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28.6 °C, respectively (Dikinya et al., 2016). The annual average rainfall brought by winds from 

the Indian Ocean averages 500 mm (Tsheko, 2021). Prolonged dry spells during rainy seasons are 

common, and rainfall is erratic, highly variable, and spatially localized (Madisa et al., 2017).  

 

Figure 5. Map of the study area 

Agricultural practices include irrigated agriculture, rainfed agriculture and livestock production. 

Permanent water bodies found in the area include the Gaborone Dam and the Sewage treatment 

ponds. The vegetation cover consists mainly of Acacia shrubs and tree savanna. The most common 

tree species in this study area are Acacia tortilis and Acacia erubescence (Sebego, 2014). 

The soil types in the area consist of Vertisols, Haplic Lixisol, and Eutric regosols (FAO, 2006). 

Vertisols are a group of heavy textured soils characterized by high values of clay content (30%), 

soil pH (7.5 – 8.5), organic matter content and water-holding capacity with variable bulk densities 

due to the swelling and shrinking nature of the soil as moisture content changes (Virmani et al., 
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1982). Lixisols are heavily weathered soils with limited nutrient availability and reserves, low 

water holding capacity, low cation exchange capacity, and high pH (Ebelhar et al., 2008). Regosols 

are characterized by medium to fine-textured soil, which may be alluvial in origin and lack 

significant soil horizon (layer) formation. They have low values of water-holding capacity and 

organic matter content and are prone to soil erosion (Virmani et al., 1982). 

3.2. Software Packages 

The following packages were used in this study for data collection, processing, and presentation: 

▪ ArcGIS—for data creation, dataset preparation, image classification, change detection, 

and accuracy assessment; 

▪ QGIS—for future LCLU prediction; this was chosen because a plugin is readily 

available. 

▪ Google Earth Pro (high resolution imagery)—for identifying LCLU classes and accuracy 

assessment; 

▪ Microsoft Office—for documentation and presentations. 

▪ R program—for statistical analysis of soil properties. 
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3.3. Detection of LCLU Change 

Figure 6 represents a methodology flow chart that was used to analyze LCLU changes between 

1988 and 2022, as well as to predict 2040 LCLU in the study area. 

 

Figure 6. Methodology flow chart. 

3.3.1. Data Acquisition 

This study explored Landsat 5 (Thematic Mapper) for 1988 satellite imagery, Landsat 7 (Enhanced 

Thematic Mapper Plus) for a 2002 satellite imagery, and Sentinel-2A Multi-Spectral Instrument 

(MSI) for a 2022 satellite imagery from the United States Geological Survey (USGS) Earth 

Explorer (www.usgs.gov), using path 172 and row 77 for Landsat images and T35JLN/MN for 

Sentinal-2A (Table 4). The selected images had a cloud cover of less than 10% (for easy 

interpretation) and were acquired in March for temporal consistency that minimizes seasonal and 

sun varying position effects. The area of interest (AOI) was digitized in Google Earth Pro, exported 

as a KML file and later converted to a shapefile in ArcGIS using the Conversion tool in ArcGIS 

10.7. Ground control points (GCP) were collected using a Geographical Positioning System (GPS). 

http://www.usgs.gov/
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Table 4. Images used for LCLU classification and analysis 

Year Satellite/Sensor Path/Row Acquisition 

date 

Resolution 

(m) 

Bands used Source 

1988 Landsat 5 (TM) 172/077 March 19 30*30 1,2,3,4,5,6,7 USGS 

2002 Landsat 7 (ETM+) 172/077 March 6 30*30 1,2,3,4,5,6,7 USGS 

2022 Sentinel-2 (MSI) T35JMN March 30 10*10 2,3,4,8 USGS 

2022 Sentinel-2 (MSI) T35JLN March 30 10*10 2,3,4,8 USGS 

 

3.3.2. Image Pre-processing 

Landsat images used for LCLU classification are often affected by atmospheric and 

topographic/geometric errors, thus requiring correction (Phiri et al., 2018). Radiometric correction 

is an essential step in the pre-processing of satellite imagery because image classification is done 

based on radiometric values. The process of radiometric correction includes atmospheric 

correction, sun elevation correction, and earth-sun distance correction, as well as simpler processes 

such as radiometric normalization and histogram equalization (Gašparović, 2020). Radiometric 

correction is essential, especially when measurements are taken from multiple sensing platforms, 

such as the combination of Landsat-5, 7, 8, and Sentinel-2 (Gašparović, 2020). In this study, 

radiometric correction was done by converting digital numbers to radiance. The image pixel values 

after correction represent an estimate of the surface reflectance or Bottom of Atmosphere (BOA) 

reflectance level (Pinto et al., 2020), thus having better image quality for easy interpretation. 

Furthermore, because of the possibility of geometric distortion in satellite imagery which may 

result from ground curvature or topographic influence, it is essential to perform geometric 

correction, especially when carrying out spatiotemporal analysis (Gašparović, 2020). This 

correction was made possible by orthorectifying the images after projecting them to a common 

geographic reference system defined by the Universal Transverse Mercator (UTM), specifically, 

UTM zone 35S coordinate on WGS 1984. The orthorectification process eliminates the effect of 

terrain on the satellite image and converts the raw image to an orthorectified image, having 

a perfect alignment with ground features (Gašparović, 2020). 

For image composition, the MTL metadata files of the Landsat images were loaded into ArcGIS 

to create a colour composite of the images. However, for the Sentinel-2A images, image 

composition was done by selecting bands 2, 3, 4, and 8 because each has a spatial resolution of 

10m. The bands were combined in ArcGIS 10.7 using the band composite tool under the Data 
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Management tool. The study area is covered by one Landsat and two Sentinel-2 image tiles. The 

two Sentinel image tiles were mosaicked in ArcGIS 10.7 to create a new raster image using the 

Mosaic to New Raster tool under the Data Management tool before extracting the area of interest 

(AOI) for classification. 

3.3.3. Image Classification 

Image classification is the process of creating thematic maps from satellite data by classifying all 

pixels into LCLU classes based on their spectral properties (Chingombe et al., 2021). There are 

two methods for image classification: Supervised and Unsupervised methods. The Supervised 

classification method uses sample points or polygons (ground truth points) from known LCLU 

types to classify images and these ground truth points are used to train a classifier (Andualem & 

Guadie, 2018). The Unsupervised classification approach, on the other hand, is a form of image 

classification in which the user has no idea about the LCLU types present in the area of study and 

it is purely based on the spectral histogram of all available pixels in an image (Andualem & Guadie, 

2018). The classification process in Supervised classification is managed by using the signature 

editor to create, manage, evaluate, and change signatures (Andualem & Guadie, 2018). Signatures 

are specific areas to which the names of the LCLU classes are assigned. Signatures are used to 

break the different LCLU classes into as many subclasses as per the classification requirement. 

The Supervised classification method, according to Chingombe et al. (2021), produces more 

accurate classification than the Unsupervised method because the algorithm is trained based on 

user knowledge.  

In this study, a supervised classification method based on a Maximum Likelihood classifier was 

adopted because of the ease of implementation to extract the LCLU classes. This classifies pixels 

based on the highest probability that a pixel belongs to a given class. In addition, Maximum 

Likelihood classification allows the validation of classified images through ground truthing 

(Chingombe et al., 2021). Furthermore, this method assumes that the spectral values of the training 

pixels are normally distributed and computes the probability that the given pixel belongs to a 

specific class (Tendaupenyu et al., 2017). 

A band combination of Red, Green and Blue was used to display the raw images. Training classes 

were selected through visual interpretation of high-resolution satellite images in Google Earth Pro 
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maps. The training areas of each LCLU class were selected throughout the study area to obtain 

good representatives (Tendaupenyu et al., 2017). The centre of large patches of LCLU features 

that were unlikely to contain mixed classes were selected in order to improve the accuracy of the 

classified image. Using a rule-of-thumb approach, at least 500 pixels per class were selected to 

enable a meaningful calculation of statistics (Mather & Tso, 2009). Based on the characteristics of 

Landsat and Sentinel-2A satellite images from 1988, 2002, and 2022, six major LCLU types were 

identified in the study area: water bodies, tree cover, cropland, shrubland, bare land and built-up 

(Table 5). 

Table 5. Description of LCLU classes in the study area  

 LCLU type Description 

1 Waterbody This includes streams, rivers, dams or reservoirs and ponds. 

2 Tree cover Woody plants that are taller than 5 meters and have a distinct crown. 

3 Cropland This includes forage, orchards, nurseries, horticultural land, and cultivated 

land. 

4 Shrubland  This includes woody plants less than 5 m tall with no defined crown and a 

mix of trees and grasses. 

5 Bare land This includes exposed soils, sand, bare rocks, and areas with less than 10% 

vegetation cover. 

6 Built-up This includes residential, commercial, industrial, transportation and urban 

areas. 

Source: Matlhodi et al., 2019) 

3.3.4. Post Classification Refinement  

A classified image often contains noise caused by the isolated pixels of some classes within another 

dominant class, which can form large patches (Erasu, 2017). It is important to presume that these 

isolated pixels are more likely to belong to this dominant class than to the classes to which they 

were initially assigned as a result of classification errors. An appropriate smoothing process 

applied to a classification image will not only ‘clean up' the image but also make it visually less 

noisy and improve the accuracy of classification (Erasu, 2017). However, Post Classification 

refinement may degrade classification results due to class overestimation because some pixels are 

replaced by values from the majority of their neighbours (Nhamo et al., 2018). This is common, 
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especially when using the Nibble tool in ArcGIS. Post-classification smoothing with a majority 

filter is essential to reduce unnecessary errors and may further improve classification accuracy 

(Erasu, 2017). Filtering entails conveying isolated pixels to the leading class within which they lie. 

In this study, tools such as the Majority filter and Boundary clean tools integrated within the 

ArcGIS software were used to smoothen or refine the classified images to improve classification 

accuracy.  

3.3.5. Accuracy Assessment 

Accuracy assessment for image classification is essential as it measures the number of ground truth 

pixels that have been classified correctly – producer’s accuracy (Chingombe et al., 2021) and the 

expected accuracy when using the created map – user’s accuracy. In this study, a classification 

accuracy assessment was performed based on points that were identified on the images and 

selected to represent the different LCLU classes in the study area. A stratified random sampling 

method was used to collect a total of 232, 274, and 296 reference data from the classified LCLU 

maps of 1988, 2002, and 2022, respectively, to ensure that all six (6) LCLU classes were 

adequately represented based on the proportional area of each class. The data was imported into 

Google Earth Pro maps to assess the classification accuracy. The ground truth data and the 

classification data were compared and statistically analyzed using an error matrix to determine if 

the pixels were grouped to the correct feature class. The Error matrix was then used to compute 

the overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA) and Kappa statistic 

(KC). The overall accuracy, user accuracy and producer accuracy, respectively, indicate the 

accuracy of the entire classification, the likelihood that a classified pixel represents the class on 

the ground or in reference data, and how well the trained pixels of the given cover type are 

classified (Matlhodi et al., 2019).  In this study, equations (5), (6), and (7) were used to compute 

the OA, UA, and PA, respectively. 

The KC represents the measure of reproducibility and assesses the probability of chance agreement 

between the reference and the image datasets (Turner, 2005). In this study, the Kappa coefficient 

was calculated using equation (11) derived by Jensen & Cowen (1999). In Kappa analysis, a KC 

value of 0.8 and above indicates a very strong agreement, while a KC value between 0.4 and 0.8 

indicates a good agreement, and a value below 0.4 indicates a poor agreement (Molla et al., 2018). 
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𝑲𝑪 =  

𝑵 ∑ 𝑿𝒊𝒊
𝒓
𝒊=𝟏 −  ∑ (𝑿𝒊+ ∗  𝑿+𝒊)

𝒓
𝒊=𝟏

𝑵𝟐 − ∑ (𝑿𝒊+ ∗  𝑿+𝒊)𝒓
𝒊=𝟏

 
    (11) 

 

Where Kc is the Kappa coefficient, N is the total number of observations included in the matrix, r 

is the number of rows in the error matrix, Xii is the number of observations in row i and column i 

(on the major diagonal), Xi+ is the total number of observations in row i (shown as marginal total 

to the right of the matrix), and X+i is the total number of observations in column i (shown as 

marginal total at bottom of the matrix). 

3.3.6. Change Detection Analysis  

Change detection is the process of detecting changes in the state of LCLU classes by observing 

them at different times (Andualem et al., 2018). Change detection quantifies the changes in the 

landscape associated with LCLU changes using remotely sensed images acquired in the same 

geographical area at different acquisition dates (Ramachandra & Kumar, 2004). It is useful in 

many applications, such as LCLU changes, habitat fragmentation, sprawl, and other changes that 

may occur within the environment (Noor et al., 2013). Several techniques with varying degrees of 

outlay, accuracy, and proficiency have been developed and widely used to assess changes that 

occur in the environment (Hassan et al., 2018). The Normalized Difference Vegetation Index 

(NDVI), Artificial Neural Networks (ANN), Change Vector Analysis (CVA), Post Classification, 

and Image Differencing are among the most commonly used methods for detecting changes in the 

environment (Peters et al., 2002; Alqurashi & Kumar, 2013; Hossain & Moniruzzaman, 2021). 

Among these techniques, the Post Classification Comparison (PCC) approach was employed in 

this study to detect the LCLU changes that had happened in the study area. PCC uses pixel-based 

comparison to generate change information on a pixel-by-pixel basis and thus interpret the changes 

more efficiently by taking advantage of “from-to” information (Matlhodi et al., 2019). In addition, 

this approach provides detailed information on the initial and final LCLU types in a complete 

matrix of direction change (Chingombe et al., 2021). The use of the PCC technique resulted in a 

cross-tabulation matrix (LCLU change transition matrix), which was computed using the overlay 

functions in ArcGIS. The computed LCLU change transition matrix consisted of rows (displaying 

LCLU type for time 1, T1) and columns (displaying LCLU type for time 2, T2), as shown in Table 

6. 
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Table 6. General LCLU change transition matrix for comparing two maps between observation 

times. 

  

Time 2 (T2) 

 LCLU 

type 
LCLU 1 LCLU 2 LCLU 3 LCLU 4 LCLU 5 LCLU 6 Total T1 Loss 

T
im

e 
1

 (
T

1
) 

LCLU 1 A11 A12 A13 A14 A15 A16 A1+ A1+ - A11 

LCLU 2 A21 A22 A23 A24 A25 A26 A2+ A2+ - A22 

LCLU 3 A31 A32 A33 A34 A35 A36 A3+ A3+ - A33 

LCLU 4 A41 A42 A43 A44 A45 A46 A4+ A4+ - A44  

LCLU 5 A51 A52 A53 A54 A55 A56 A5+ A5+ - A55  

LCLU 6 A61 A62 A63 A64 A65 A66 A6+ A6+ - A66 

Total T2 A+1 A+2 A+3 A+4 A+5 A+6 1   

Gain A+1 - A11  A+2 - A22 A+3 - A33 A+4 - A44 A+5 - A55 A+6 - A66     

 

Where Aij is the land area that experiences a transition from LCLU type i to LCLU type j, Aii are 

the diagonal elements indicating the land area that shows the persistence of LCLU type i while the 

entries of the diagonal indicate a transition from LCLU type i to a different type j, Ai+ (total 

columns) is the land area of LCLU type i in time 1 (T1) which is the sum of all j of Aij, A+j (total 

rows) is the land area of LCLU type in time 2 (T2) which is the sum of overall of i of Aij, Losses 

(A1+ - Aii) is the proportion of landscape that experiences gross loss of LCLU type i between time 

1 and 2, and Gains (A+1 – Aii) is the proportion of landscape that experiences gross gain of LCLU 

type j between time 1 and 2.  

The gains and losses in each LULC type between 1988 and 2022 were categorized into three (3) 

time periods being: (a) 1988–2002, b) 2002–2022, and c) 1988–2022). The following four aspects 

recommended by Macleod & Congalton (1998) were examined after the change detection was 

performed: 

• Assessing the changes that have occurred; 

• Identifying the nature of change;  

• Calculating the areal extent of change; and 

• Assessing the spatial pattern of the change. 



 

50 
 
 

3.4. Annual Rate of LCLU Change 

For each time period, the pattern of change for each LCLU class was calculated, and the magnitude 

of change in LCLU types within and between time periods was compared. The rate of change was 

measured in square kilometres (km2) per year, and the percentage (%) share of each LCLU type 

was, respectively, calculated to demonstrate the magnitude of the changes experienced between 

the periods using equations (12) and (13) (Hassen & Assen, 2017; Matlhodi et al., 2019): 

 
𝑪𝑨 =

𝑨𝟐 − 𝑨𝟏

𝑨𝟏
∗ 𝟏𝟎𝟎 

    (12) 

 

 
𝑫 =

𝑨𝟐 − 𝑨𝟏

𝑨𝟏(𝑻𝟐 − 𝑻𝟏)
∗ 𝟏𝟎𝟎 

    (13) 

 

Where CA is the percentage change in the area of LCLU class between initial time T1 and final 

time T2, D is the annual average rate of change (%), A1 is the area of the LCLU class at time 1 (T1), 

and A2 is the area of the LCLU class at time 2 (T2). 

3.5. Modelling Future LCLU Change 

With knowledge of the annual change rate in the LCLU classes in the study area over the past three 

decades (1988 – 2022), the study sought to gain insight into the future LCLUs. Knowledge of 

future LCLUs and changes will enable natural resource managers to make better decisions about 

future land use policies and strategies within the context of sustainable land use planning. An 

insight into future LCLUs and changes can be gained through a modelling approach. Modeling 

LCLU change has recently been regarded as one of the most valuable tools for ensuring that the 

current natural resource base guarantees the future and continuous supply of natural resources 

(Munthali, 2020). Several models for LCLU simulation and prediction have been developed in 

recent years. Some of the most widely used models/approaches include the Markov Chain Model, 

Cellular Automata (CA), Cellular Automata–Markov model (CA–Markov), Artificial Neural 

Network (ANN), Logistic Regression (LR), Conversion of Land Use and its Effects (CLUE), 

Modules of Land Use Change Evaluation (MOLUSCE), among others (Hossain & Moniruzzaman, 

2021; Kamaraj et al., 2022). 

Among these models, the Cellular Automata (CA) is a powerful approach for understanding land-

use systems and their integral dynamics, especially when integrated with other tools such as 
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Artificial Neural Networks (ANNs) (Mnyali & Materu, 2021). According to Verburg et al. (2008), 

no single model is capable of considering all the processes of LCLU changes at different scales; 

thus, integrated land-use models that combine one or two models are most often preferred for 

simulating and predicting LCLUs. Therefore, this study deployed the use of the MOLUSCE, a 

QGIS-based tool, for predicting future LCLUs and changes. The plugin incorporates algorithms 

such as utility modules, cross-tabulation techniques, and algorithmic modules such as artificial 

neural networks (ANNs), multi-criteria evaluation (MCE), weights of evidence (WoE), logistic 

regression (LR), and cellular automata (CA) models (Kamaraj et al., 2022). It was developed by 

Asia Air Survey to analyze, model, and simulate LCLU changes (Asia Air Survey, 2012). Its user 

interface provides an easy-to-use interface with specific modules and functions. Several 

researchers have used this approach in different landscapes over the last few years to model, 

monitor, predict, and simulate LCLU changes, and the technique produced accurate and reliable 

results (Saputra & Lee, 2019;  Kamaraj et al., 2022; Muhammad et al., 2022).  

The CA-ANN model in MOLUSCE is considered one of the most reliable tools for simulating and 

predicting future LCLUs because of its ability to estimate a pixel's current condition based on its 

initial state, surrounding neighbourhood effects, and changeover laws (Kamaraj et al., 2022). 

Furthermore, it is able to generate complex patterns and accurately depict non-linear spatial 

stochastic LCLU change processes (Saputra & Lee, 2019). The CA represents the state and 

dynamics of the environment. A significant challenge in the development of CA models is the 

determination of rules that govern system behaviour and incorporating heterogeneity and 

dynamism into these rules. 

The graphical user interface (GUI) of the MOLUSCE plugin consists of 6 main components: 

Inputs, Evaluation Correlation, Area Changes, Transition Potential Modelling, Cellular Automata 

Simulation and Validation. 

3.5.1. Inputs  

The initial (time1) and final (time2) LCLU maps, as well as spatial variables such as elevation 

(DEM), slope, distance from roads, and distance from rivers and streams, are loaded in this panel. 

The LCLU change information and the spatial variables are used for modelling and simulating 

LCLU changes. A "Check geometry" function is also included in the "Inputs" tab to ensure that all 
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datasets have the same spatial geometry (i.e., extent and spatial resolution). The input datasets for 

this study were the classified LCLU maps of 1988 and 2002, as well as spatial variable factors 

such as the digital elevation model (DEM), slope, and distance from major roads and rivers. The 

properties of the maps and the spatial variable factors were extracted in the same raster format, 

same projection (UTM 35S on WGS 1984), and same spatial resolution (10 m) before they were 

loaded into the module. The spatial variables were used as independent variables, while the 

classified LCLU images were used as dependent variables to predict the LCLU of 2040 (i.e. 18 

years prediction). 

3.5.2. Evaluation of Correlation 

This tab contains three methods for determining correlation among spatial variables: Pearson's 

correlation, Crammer's coefficient, and Joint Information Uncertainty (Gismondi et al., 2014). In 

this study, the Person's correlation method was used to examine the correlation among spatial 

variable factors because it provides information about the magnitude of the association as well as 

the direction of the relationship between spatial variables (Mnyali & Materu, 2021). 

3.5.3. Area Change 

In this component, LCLU area, changes and transition probabilities were computed. This section 

also generated an LCLU change map. The transition probability matrix generated in this section 

showed the proportion of pixels that changed from one LCLU category to another (Kamaraj et al., 

2022). The area change map depicts the change in LCLUs that occured between 1988 and 2002. 

3.5.4. Transition Potential Modelling 

In this component, many methods for computing transition potential maps are available such as 

artificial neural networks (ANN), weights of evidence (WoE), logistic regression (LR), and Multi-

Criteria Evaluation (MCE). Each method uses information from the LCLU maps and spatial 

variables as inputs to calibrate and model LCLU changes (Gismondi et al., 2014). The ANN 

(Multilayer Perception) technique was selected due to its simplicity and reliability (Saputra & Lee., 

2019). 
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3.5.5. Cellular Automata Simulation  

Transition potential maps, as well as simulated LCLU maps, are generated under this component 

(Gismondi et al., 2014). In this component, data from the LCLU maps (1988 and 2002), spatial 

variables and transition probability matrix were used to train the ANN classifier. The trained 

classifier was then used to simulate the 2022 LCLU map. The following model parameters were 

set for the ANN learning process to simulate an accurate LCLU map for 2022 (to test the trained 

classifier using the training data): 1000 iterations; a neighbourhood value of 1 X 1 pixel; a learning 

rate of 0.1; 12 hidden layers, and 0.05 momentum. 

3.5.6. Validation 

The validation component computed the Kappa statistic for the simulated LCLU map. 

The accuracy of the model was then assessed by comparing the Kappa coefficients of the actual 

and simulated LCLU maps. An overall Kappa coefficient of 0.87 was obtained for the simulated 

LCLU of 2022. This Kappa value is acceptable for the validation of the model to predict future 

LCLU maps for the study. Finally, the trained model was then used to predict the LCLU in 2040. 

3.6. SOC Stock Determination 

Once the LCLUs of the study area had been determined and assessed, the concentration of SOC 

content in different LCLUs in the study area was investigated to determine how LCLU change 

influenced SOC content.  

3.6.1. Sampling design 

The SOC content in areas with LCLU changes was determined through stratified random sampling 

of the LCLU map. The LCLU types with significant changes were considered potential sampling 

sites for SOC estimation. Tree cover, shrubland, cropland, built-up land, and bare land were the 

LCLU types explored because significant LCLU changes were observed in these classes. Since 

the goal of this study is to determine how LCLU change affects SOC, water bodies were excluded. 

To ensure the sampled data truly represents the SOC stock where LCLU conversion has occurred, 

Arp & Krause (1984) suggested collecting 15 samples per stratum or class to achieve a 95 % 

confidence interval (CI) with a 5% error margin. Accordingly, 15 sampling points were randomly 

generated within each LCLU class.  
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The effect of LCLU change on SOC stock was examined by comparing the amount of SOC content 

in areas with and without LCLU change. It was assumed that the SOC in areas with no LCLU 

change has remained constant over time. To determine the amount of SOC content in areas with 

no LCLU change, soil samples were randomly collected from 5 points in each of the LCLU classes 

that did not change during the study period. The SOC in these areas served as a baseline for 

comparing the SOC in areas that had undergone LCLU change. 

In total, 86 sample points were used in this study for soil sample collection. The random points 

and their geographical coordinates were generated in ArcGIS 10.7 using the Segmentation and 

Classification tool under Special Analyst tools. The selected points were located in the field using 

Google Maps. At the sampling points, soil samples were collected from a depth of 30 cm for SOC 

content, pH, and soil texture determination. Studies have shown that SOC is higher in the topsoil 

and decreases exponentially with depth (Soussana & Lemaire, 2014; Orgill et al., 2014; Husein et 

al., 2019). In addition, the 30 cm soil depth is considered the most relevant soil depth for SOC 

estimation because it is the most biologically active layer of the soil (Drayton Chandler, 2016) and 

is most affected by land management practices, particularly in the agricultural system (ploughing) 

(Vågen & Winowiecki, 2013). Equally, soil samples were collected from a depth of 15 cm using 

a core sampler with a known volume (144.32 cm3) for bulk density determination. This depth was 

chosen because the bulk density at this depth is not significantly different from that at 15-30 cm. 

The samples were packed in labelled sealed plastic bags for easy identification and preservation, 

as recommended by Pule-Meulenberg et al. (2005). Finally, the samples were transported to the 

Botswana University of Agriculture and Natural Resources (BUAN) Department of Crop and Soil 

Sciences laboratory for analysis. 

3.7. Laboratory Analysis 

Soil samples (except those for bulk density) were prepared for laboratory analysis by air-drying, 

crushing, thoroughly mixing, and sieving with a 2.00 mm sieve (FAO, 2019). The parameters 

determined include SOC content, bulk density, pH and texture. 

For bulk density determination, the soil samples collected with the core sampler were oven-dried 

at a temperature of 105oC for 48 hours (Blake and Hartge, 1986). The weight of the oven-dried 

samples was divided by the core volume to obtain the bulk density, as shown in equation (14). 
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𝑩𝒖𝒍𝒌 𝒅𝒆𝒏𝒔𝒊𝒕𝒚 (𝒈/𝑪𝒎𝟑

) =
𝑶𝒗𝒆𝒏 𝒅𝒓𝒊𝒆𝒅 𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒔𝒂𝒎𝒑𝒍𝒆 (𝒈)

𝑪𝒐𝒓𝒆 𝒗𝒐𝒍𝒖𝒎𝒆 (𝒄𝒎𝟑)
 

    (14) 

  

Soil Organic Carbon Content was determined using the Walkley and Black method (1934). In this 

method, 2g of the sieved soil sample was weighed into a 250 ml conical flask, followed by the 

addition of 10 ml of Potassium dichromate (0.2 M K2Cr207) and 20 ml of 98% concentrated 

Sulphuric acid (H2SO4). The mixture was gently swirled and allowed to digest under a fume hood 

for an hour. Finally, a supper flock solution (200 ml) was added to the mixture and allowed to 

react for two hours under the fume hood. The concentration of organic carbon (%) in the solution 

was measured using a UV-Vis Spectrophotometer (Genesys 10S). The carbon in the solution was 

measured at 620nm wavelength and 2cm path length. 

The SOC stock (kgC/m2) for each sampled depth (30 cm) in the different LCLU types was 

calculated using equation (15) (Solomon et al., 2002; Chia et al., 2020). 

 𝑺𝑶𝑪 𝒔𝒕𝒐𝒄𝒌 (𝒌𝒈/𝑪𝒎𝟐) = (𝑶𝑪 × 𝑩𝑫 × 𝑫) × 𝟏𝟎     (15) 

 

Where C is the SOC stock (g/m2) of a sampled depth, D is the depth at which the soil sample was 

collected (cm), BD is the bulk density (g/cm3) of soil at a sampled depth, and OC is the SOC 

content (%) of a sampled depth.  

Soil pH was determined by mixing 10 g of soil with 20 ml of distilled water (ratio, 1:2) to form a 

supernatant solution (Okalebo et al., 2002). The solution was placed in an electric mixer for 30 

minutes to ensure thorough mixing. The pH of the solution was then determined using a pH meter 

(pH-Orion Star A111).  

The soil texture was determined quantitatively using the Bouyoucos hydrometric method (van 

Reeuwijk, 2002; Petrenko & Berezhnyak, 2008). In this method, 50 g of the 2 mm sieved soil 

sample was mixed with 100 ml of distilled water, followed by the addition of 10 ml of sodium 

hexametaphosphate to disperse the particles. The solution was mixed in an electric mixer for 15 

minutes to ensure that all of the soil particles were fully dispersed. The solution was then 

transferred to a 1000 ml measuring cylinder and filled to capacity with distilled water. A blank 

solution containing 10ml sodium hexametaphosphate and distilled water was also prepared in a 
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1000ml measuring cylinder. The temperature of both solutions was measured with a mercury-in-

glass thermometer to be sure that both solutions were at the same temperature (but not exceeding 

20 oC). The cylinder containing the sample was sealed with a rubber stopper and vigorously shaken 

to ensure that no sediment remained at the bottom of the cylinder. The time when mixing was 

stopped was noted, and the first hydrometric reading was taken with a hydrometer after 40 seconds 

(silt and clay fractions), and the second reading was taken after 2 hours (clay fraction). Equations 

(16), (17) and (18) were used to calculate the percentages of clay, silt and sand (Dikinya et al., 

2016). 

 
% 𝑪𝒍𝒂𝒚 =

𝑯𝒚𝒅𝒓𝒐𝒎𝒆𝒕𝒆𝒓 𝒓𝒆𝒂𝒅𝒊𝒏𝒈 𝒂𝒇𝒕𝒆𝒓 𝟐 𝒉𝒐𝒖𝒓𝒔

𝑴𝒂𝒔𝒔 𝒐𝒇 𝒔𝒂𝒎𝒑𝒍𝒆 (𝟓𝟎𝒈)
 × 𝟏𝟎𝟎%  

    (16) 

 

 
% 𝑺𝒊𝒍𝒕 =

𝑯𝒚𝒅𝒓𝒐𝒎𝒆𝒕𝒆𝒓 𝒓𝒆𝒂𝒅𝒊𝒏𝒈 𝒂𝒇𝒕𝒆𝒓 𝟐 𝒉𝒐𝒖𝒓𝒔

𝑴𝒂𝒔𝒔 𝒐𝒇 𝒔𝒂𝒎𝒑𝒍𝒆 (𝟓𝟎𝒈)
 × 𝟏𝟎𝟎% − (% 𝒄𝒍𝒂𝒚)   

    (17) 

 

 % 𝑺𝒂𝒏𝒅 = 𝟏𝟎𝟎% − (% 𝑺𝒊𝒍𝒕 + % 𝑪𝒍𝒂𝒚)     (18) 

 

Finally, the soil texture classes were determined using a Soil Textural Triangle developed by the 

United States Department of Agriculture (USDA) soil classification triangle. 

3.8. Statistical Analysis 

Statistical data analysis was carried out using R statistical software (version 4.21 for Windows) 

and Microsoft Excel. Statistically significant differences were accepted at p < 0.05. One–way 

ANOVA (analysis of variance) with Post-hoc least significant difference (LSD) was conducted to 

examine the differences in soil properties (SOC content, bulk density, pH and texture) with LCLU 

types. Also, the relationships between SOC and bulk density, pH, and texture were examined using 

Microsoft Excel. 

3.9. Limitations of this study 

There was a possibility that some errors might have occurred during image classification 

processes, particularly for the 1988 image, due to spectral resemblance for some classes with high 

spectral resemblance. This could have influenced both the derived LCLU classes and the estimated 

LCLU changes. This situation is common, especially when mapping LCLU for the past periods 
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for which it is impossible to obtain ground information (Enaruvbe & Pontius, 2015). Also, the 

study assumed that SOC content in areas where no LCLU change was observed was the same as 

it was in 1988. This was due to a lack of SOC content data for the various LCLU types in the study 

area in previous years. This may cause uncertainty in the change in SOC results obtained during 

the study period. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1. LCLU Types in 1988, 2002 and 2022 

Landsat and Sentinel-2A images obtained from the USGS (www.usgs.gov) were analyzed using 

Supervised classification employing the Maximum Likelihood algorithm. These LCLU maps were 

developed to show the LCLU types identified in the study area in 1988, 2002, and 2022. The 

identified LCLU types in the study area were water bodies, tree cover, cropland, shrubland, bare 

land and built-up (Figure 7). 

 

Figure 7. LCLU categories for (a) 1988, (b) 2002 and (c) 2022 

The accuracy assessment for the three LCLU classifications was done by comparing the 

classification results with ground truth points. Error matrix was used to compute the OA, UA, PA, 

http://www.usgs.gov/
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and KC for the 1988, 2002 and 2022 LCLU maps and the results are presented in Tables 7, 8 and 

9. 

The OA for the 1988, 2002, and 2022 images were 85.8%, 86.1%, and 94.0%, respectively. These 

values are acceptable as OA statistics normally fall between 85% and 95%, according to Congalton 

(1996) and Mango (2010). The KC values for the 1988, 2002 and 2022 images were 0.83, 0.83, 

and 0.93, respectively. The KCs were greater than 0.8, indicating a high level of agreement 

between image data and ground truth data, as stated by Molla et al. (2018). 

Table 7. Confusion matrix and classification accuracy of LCLU 1988 image 

 LCLU Type Water Tree cover cropland Shrubs Bare land Built up Total User UA (%) 

Water 32 0 0 0 0 0 32 100.0 

Tree cover 0 28 1 4 0 0 33 84.8 

Cropland 0 1 39 1 0 0 41 95.1 

Shrubland 0 6 1 36 2 0 45 80.0 

Bare land 0 0 4 0 29 7 40 72.5 

Built up 0 0 2 0 4 35 41 85.4 

Total Producer 32 35 47 41 35 42 232  
PA (%) 100.0 80.0 83.0 87.8 82.9 83.3   
OA 85.8% 

Kc 0.83 

 

Table 8.  Confusion matrix and classification accuracy of LCLU 2002 image 

LCLU Type Water Tree cover cropland Shrubs Bare land Built up Total User UA (%) 

Water 30 0 0 0 0 0 30 100.0 

Tree cover 0 44 0 3 0 0 47 93.6 

Cropland 0 0 34 2 2 4 42 81.0 

Shrubland 0 3 4 57 0 0 64 89.1 

Bare land 0 0 4 1 34 6 45 75.6 

Built up 0 0 5 0 4 37 46 80.4 

Total Producer 30 47 47 63 40 47 274  
PA (%) 100.0 93.6 72.3 90.5 85.0 78.7   
OA 86.1% 

Kc 0.83 

 

 

 



 

60 
 
 

Table 9. Confusion matrix of 2022 and classification accuracy of LCLU 2022 image 

LCLU Type Water Tree cover Cropland Shrubs Bare land Built up Total User UA (%) 

Water 28 0 0 0 0 0 28 100.0 

Tree cover 0 64 0 0 0 0 64 100.0 

Cropland 0 0 34 2 0 1 37 91.9 

Shrubland 0 2 5 63 0 0 70 90.0 

Bare land 0 0 1 0 28 4 33 84.8 

Built up 0 0 1 0 2 61 64 95.3 

Producer 28 66 41 65 30 66 296  
PA (%) 100.0 97.0 82.9 96.9 93.3 92.4   
OA 94.0% 

Kc 0.93 

 

4.2. Area Statistics for LCLU types in 1988, 2002 and 2022 and trends (1988 – 2022) 

The area statistics for the different LCLU types in 1988, 2002, and 2022 are presented in Table 10 

and Figure 8. From Table 10 and Figure 8, the shrubland class was the most dominant LCLU type 

in the study area, covering an area of 426.47 km2 (63.75%) in 1988, 438.35 km2 (65.53%) in 2002 

and 402.57 km2 (60.18%) in 2022. The area coverage for this class decreased throughout the study 

period, which could be attributed to land clearing for built-up expansion and agricultural activities 

as a result of population growth. 

The tree cover LCLU type occupied an area of 129.68 km2 (19.39%) in 1988, 107.58 km2 (16.08%) 

in 2002, and 96.42 km2 (14.41%) in 2022. In 1988 and 2002, tree cover was the second most 

dominant class in the study area after the shrubland class. This class experienced a decline in 

coverage throughout the study period. This could be attributed to forest clearing for fuelwood and 

agriculture. 

The built-up class occupied an area of 24.22 km2 (3.62 %) in 1988, 73.59 km2 (11%) in 2002, and 

99.34 km2 (14.86%) in 2022. In 2022, the built-up class was the second most dominant LCLU type 

after the shrubland class. Its trend increased throughout the study period. This result was consistent 

with the findings of Li et al. (2022), who found that built-up areas had expanded globally in recent 

decades despite a decrease in global population growth. 

The bare land class occupied 26.65 km2 (3.98%) of the total land area in 1988, 8.95 km2 (1.34%) 

in 2002, and 21.62 km2 (3.23%) in 2022. In 2002, bare land was the least dominant class. The area 
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coverage by this class decreased from 26.65 km2 in 1988 to 8.95 km2 in 2002 before expanding to 

21.62 km2 in 2022. The significant increase in bare land area coverage between 2002 and 2022 

could be attributed to land clearing for development, fuelwood collection, agricultural activities, 

and livestock overgrazing (Tsheko, 2022). 

The cropland class occupied 39.73 km2 (5.94%) of the total land area in 1988, 20.93 km2 (3.13%) 

in 2002, and 33.45 km2 (5%) in 2022. The area coverage for this class decreased between 1988 

and 2002. However, it experienced an increase in its area coverage between 2002 and 2022, which 

could be attributed to the presence of the Integrated Support Program for Arable Agricultural 

Development (ISPAAD) and other government support programs that provide appealing 

opportunities for subsistence farmers to increase their incomes (Kamwi et al., 2018).    

The water body class covered an area of 22.19 km2 (3.32%) in 1988, 19.54 km2 (2.92%) in 2002, 

and 15.42 km2 (2.31%) in 2022. It was the least dominant class in 2022. Overall, its area coverage 

decreased throughout the study period. 

Table 10. Area Statistics for the LCLU categories in 1988, 2002 and 2022 

  LCLU 1988 LCLU 2002 LCLU 2022  

LCLU Type Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%) 

Water bodies 22.19 3.32 19.54 2.92 15.43 2.31 

Tree cover 129.68 19.39 107.58 16.08 96.42 14.41 

Cropland 39.73 5.94 20.93 3.13 33.47 5 

Shrubland 426.47 63.75 438.35 65.53 402.57 60.18 

Bare land 26.65 3.98 8.95 1.34 21.63 3.23 

Built up 24.22 3.62 73.59 11 99.41 14.86 

Total 668.94 100 668.94 100 668.94 100 
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Figure 8. Area Statistics for the LCLU categories in 1998, 2002 and 2022 

4.3. LCLU Change Detection Analysis (1988 – 2022)  

4.3.1. Gains and Losses in LCLU Types 

Throughout the study period, significant conversions of the LCLU types to others were observed 

(Figures 9 & 10). The spatial extent of an LCLU type shrinks once its portion is converted into 

another type. Gains and losses in the area coverage for the different LCLU types were assessed 

using the LCLU change matrix (Tables 11, 12, & 13).  

The built-up LCLU type was gaining primarily from the shrubland throughout the study period. It 

gained 34.97 km2 of shrubland between 1988 and 2002 (Table 11) and 49.21 km2 between 2002 

and 2022 (Table 12), thereby increasing its spatial extent. The built-up LCLU type gained 75.12 

km2 (310.16 %) from 1988 to 2022 (Table 16). The expansion in built-up areas could be attributed 

to population growth due to urban migration. This resulted in lands previously used for agricultural 

purposes or occupied by natural vegetation being converted into built-up areas to accommodate 

the growing population.  
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Figure 9. Changes in LCLU types from (a) 1988 to 2002; (b) 2002 to 2022 and (c) 1988 to 2022. 

 

Figure 10. Gains and losses in LCLU classes from 1988 to 2022 
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Table 11. LCLU change matrix for 1988 – 2002 change period 
1

9
8

8
 

LCLU classes 

2002 

Water 

bodies 

Tree 

cover 
Cropland 

Shrub 

land 

Bare 

land 
Built-up 

Losses 

(km2) 

Losses 

(%) 

Water bodies 19.43 0.48 0.06 1.84 0.01 0.38 2.77 12.47 

Tree cover 0.51 34.44 2.01 107.34 0.65 3.37 113.88 76.78 

Cropland 0.03 0.51 3.24 20.98 0.28 1.61 23.41 87.83 

Shrubland 0.3 36.16 12.11 331.03 6.31 34.97 95.63 22.41 

Bare land 0.07 0.24 3.26 17.41 1.25 4.4 25.4 95.31 

Built-up 0.02 0.03 0.19 4.54 0.27 19.19 5.05 20.85 

Gains (km2) 0.93 37.43 17.63 146.33 7.52 44.73  266.14   

Gains (%) 4.55 52.08 87.83 30.65 85.76 69.98     

 

Table 12. LCLU change matrix for 2002 – 2022 change period 

2
0

0
2
 

LCLU classes 

2022 

Water 

bodies 

Tree 

cover 
Cropland 

Shrub 

land 

Bare 

land 
Built-up 

Losses 

(km2) 

Losses 

(%) 

Water bodies 15.07 0.25 0.98 3.18 0.87 0.01 5.28 25.96 

Tree cover 0.04 30.28 0.61 64.1 0.30 0.54 65.59 68.42 

Cropland 0.03 0.56 8.31 12.27 1.07 4.40 18.33 68.79 

Shrubland 0.19 36.23 22.67 337.58 14.1 42.17 139.43 29.23 

Bare land 0.00 0.29 0.26 4.12 0.71 3.38 8.05 91.85 

Built-up 0.12 4.21 0.52 5.66 4.19 49.21 14.69 22.99 

Gains (km2) 0.38 41.54 25.04 89.33 20.52 50.5  251.37   

Gains (%) 2.45 57.84 75.07 20.92 96.64 50.65     

 

The bare land LCLU type lost 17.41 km2 of its coverage to the shrubland LCLU type between 

1988 and 2002 (Table 10), which could be attributed to heavy rains received in the country after 

the prolonged drought period of 1993 – 1995 (Fox et al., 2017). A significant loss in bare land 

coverage was observed between 1988 and 2022. The bare land LCLU type was losing primarily 

to shrubland land. 

 Between 2002 and 2022, the bare land LCLU type gained 14.1 km2 from the shrubland type (Table 

11). This could be a result of prolonged drought periods caused by rainfall variability (Figure 11) 

(Akinyemi, 2017; Byakatonda et al., 2018). In addition, it could be attributed to the interaction of 

both climates (such as drought) and human activities (livestock grazing and land clearing for 

fuelwood and cultivation) that resulted in the loss of vegetal cover. The bare land LCLU type was 
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mainly gaining from the shrubland during this period. The gains in bare land were more significant 

around built-up areas (due to the expansion of built-up areas as a result of population growth) and 

croplands (bare fields after harvesting).  

Table 13. LCLU change matrix for 1988 – 2022 change period 

1
9

8
8
 

LCLU classes 

2022 

Water 

bodies 

Tree 

cover 
Cropland 

Shrub 

land 

Bare 

land 
Built-up 

Losses 

(km2) 

% 

Losses 

Water bodies 14.59 0.76 1.09 4.69 0.97 0.08 7.60 34.24 

Tree cover 0.44 31.53 2.70 105.78 2.10 5.64 116.66 78.72 

Cropland 0.04 1.99 4.30 23.22 0.93 2.86 29.04 87.10 

Shrubland 0.31 58.3 9.11 265.58 14.97 65.62 160.78 37.71 

Bare land 0.07 1.37 3.55 14.65 1.24 5.74 25.38 95.35 

Built-up 0.00 1.93 0.12 1.39 1.03 19.77 4.46 18.42 

Gains (km2) 0.85 64.34 16.57 137.26 20.00 79.94 343.92   

% Gains 5.54 67.11 79.4 34.07 94.17 80.17     

 

Natural vegetation (shrubland and tree cover) demonstrated an overall decrease in coverage 

throughout the study period. Shrubland and tree cover lost 24.16 km2 (5.67%) and 33.32 km2 

(25.69%) coverage, respectively, between 1988 and 2022 (Table 14). Tree cover losses were 

mainly to shrublands. The most common tree species found in the study area were Acacia tortilis 

and Acacia erubescence. Other tree species, such as Combretum imberbe and Terminalia 

pruniouides, were common in the 1980s but had been depleted because they were the most 

preferred species for fuelwood (Sebego, 2014). This result was consistent with the findings of 

Ringrose et al. (1996), who reported a decrease in dense woody vegetation covers in the Notwane 

catchment area between 1984 and 1994. Furthermore, Dougill et al. (2016) also reported a similar 

scenario in the Kalahari region of South Africa, where savanna landscapes had experienced 

extensive bush encroachment and changes in herbage. 

Even though the shrubland LCLU type was generally losing its area coverage, a significant gain 

(11.88 km2, 2.79 %) in its cover was observed between 1988 and 2002 (Table 14). Gain in 

shrubland during this period was mainly from tree cover (due to forest clearing for fuelwoods and 

other forest products) and bare land. The gain in shrubland from bare land indicated the ability of 

natural vegetation to regenerate even after extended periods of drought.  



 

66 
 
 

A significant loss in shrubland was observed between 2002 and 2022 (Figure 10). This result was 

consistent with the findings of Tsheko (2022), who reported a 1.6% loss in shrubland coverage 

between 2002 and 2020 in the Greater Gaborone area. Shrubland losses were mainly to croplands 

and built-up areas, resulting in the reduction of land reserved for forage as well as a reduction in 

the quality of forage. Furthermore, shrubland losses during this period could also be attributed to 

rainfall variability (Figure 11), as vegetation production in semi-arid regions is highly dependent 

on rainfall (Rutherford, 1980; le Houerou et al., 1988). 

 

Figure 11. National Average Rainfall (mm) (long vs short terms) (Statistics Botswana, 2018). 

There was a general loss in the area covered by the cropland LCLU type between 1988 and 2022. 

Despite the overall loss in cropland coverage, a significant gain in coverage was observed between 

2002 and 2022 (Figure 10). The loss in cropland coverage observed between 1988 and 2002 can 

be attributed to field abandonment due to the failure of the agricultural support programs such as 

the Arable Land Development Program (ALDEP), the Arable Rain-Fed Agricultural Program 

(ARAP) (Seto et al., 2012). Abandonment of agricultural land has been reported to have increased 

globally and within Sub-Saharan Africa (Shackleton et al., 2013), despite the clear need for 

increased agricultural engagement and productivity. Cropland abandonment in Southern Africa 

has also been linked to a lack of draught power, variable rainfall, droughts and more modernized 

youths who are hesitant to live a marginal agrarian lifestyle (Blair et al., 2018).   
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The current study also found that most of the croplands were located in rural areas (for example, 

Oodi, Modipane, Gabane and Mokolodi) and were rainfed. The rural population, like in the rest of 

Botswana, relies on rain-fed subsistence farming combined with livestock raising (Matlhodi et al., 

2019). This result indicated that agriculture remains the backbone of the rural economy, as 

evidenced by the observed gain in cropland between 2002 and 2022 (Figure 10). Bessah et al. 

(2019) noted that the expansion of agricultural land is a global trend, regardless of the economic 

status and location of a country. The gains in croplands observed during the 2002-2022 change 

period could be attributed to the need for more food production to meet the demand of the growing 

population. In addition, it could also be attributed to the presence of agricultural subsidy schemes 

such as ISPAAD and other government support programs. One of the objectives of ISPAAD was 

to provide farmers with 100% subsidy for ploughing and row planting (GoB, 2013), thereby 

encouraging more farmers to clear more land for cultivation. The expansion in croplands 

contributed to the reduction in shrubland. Cropland gain was also reported by Nkambwe & Totolo 

(2005) in Gaborone, where they found that arable lands were expanding into the woodlands and 

open grasslands, primarily used for communal grazing. In addition, cropland expansion was also 

observed in the Ameleke watershed in Ethiopia (Temesgen et al., 2014) and other developing 

countries where the loss of natural vegetation for crop production was crucial for cropland 

expansion (Lubowski et al., 2006).  

Generally, water bodies shrank throughout the study period. A total of 6.77 km2 (30.51%) of water 

coverage was lost during the study period (1988 – 2022). The water LCLU type was mainly losing 

to shrubland. The reduction in the spatial extent of the water body class indicates low rainfall and 

high evaporation in the study area. The water body LCLU type expansively lost its cover (4.12 

km2 or 21.08 %) between 2002–2022 (Table 15), which could be attributed to low rainfall 

experienced in the country over the past few years (Figure 11) and usage.  

4.3.2. Annual Change Rate 

The annual change rates for the different LCLU types between 1988 and 2002, 2002 and 2022, 

and 1988 and 2022 change periods are presented in Tables 14, 15, and 16. Spatially, the fastest 

annual change rates in the LCLU types were observed between 1988 and 2002 (Table 13). During 

this transition period, the bare land class shrank annually at a rate of 1.26 km2/year (4.74%), 

making it the most reduced LCLU type in the period. The built-up category increased annually at 
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a rate of 3.53 km2/year (14.56 %), making it the highest increased category in that period. This 

result agreed with the findings of López et al. (2001), who found that settlements in developing 

countries were growing five times faster than those in developed countries. 

Table 14. Area Statistics for changes in the LCLU categories from 1988 to 2002 

LCLU type 

LCLU 1988 LCLU 2002 Changes Annual change rate 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(Km2/year) 

Area 

(%/year) 

Water 

bodies 22.19 3.32 19.54 2.92 -2.65 -11.94 -0.19 -0.85 

Tree cover 129.68 19.39 107.58 16.08 -22.1 -17.04 -1.58 -1.22 

Cropland 39.73 5.94 20.93 3.13 -18.8 -47.32 -1.34 -3.38 

Shrubland 426.47 63.75 438.35 65.53 11.88 2.79 0.85 0.20 

Bare land 26.65 3.98 8.95 1.34 -17.7 -66.42 -1.26 -4.74 

Built up 24.22 3.62 73.59 11.00 49.37 203.84 3.53 14.56 

Total 668.94 100 668.94 100     
 

Between 2002 and 2022 (Table 15), the water body class decreased annually at a rate of 0.21 

km2/year. (1.05%), making it the most reduced category in the period. Conversely, the bare land 

class increased annually at a rate of 0.63 km2/year (7.08%), making it the highest increased 

category in the period. From the results presented in Table 16, it can be concluded that tree cover 

and water bodies were the most reduced categories between 1988 and 2022, with annual change 

rates of 0.98 km2/year (0.76%) and 0.2 km2/year (0.9%), respectively. However, the built-up 

category recorded the highest increase, with an annual change rate of 2.21 km2/year (9.12%) over 

the study period. 

Table 15. Area Statistics for changes in the LCLU categories from 2002 to 2022 

LCLU 

type 

LCLU 2002 LCLU 2022 Changes Annual change rate 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(Km2/year) 

Area 

(%/year) 

Water 

bodies 
19.54 2.92 15.42 2.31 -4.12 -21.08 -0.21 -1.05 

Tree cover 107.58 16.08 96.36 14.41 -11.22 -10.43 -0.56 -0.52 

Cropland 20.93 3.13 33.45 5.00 12.52 59.82 0.63 2.99 

Shrubland 438.35 65.53 402.31 60.18 -36.04 -8.22 -1.80 -0.41 

Bare land 8.95 1.34 21.62 3.23 12.67 141.56 0.63 7.08 

Built up 73.59 11.00 99.34 14.86 25.75 34.99 1.29 1.75 

Total 668.94 100 668.94 100     
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Table 16. Area Statistics for changes in the LCLU categories from 1988 to 2022 

LCLU 

type 

LCLU 1988 LCLU 2022 Changes Annual change rate 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2)) 

Area 

(%) 

Area 

(Km2/year) 

Area 

(%/year) 

Water 

bodies 22.19 3.32 15.42 2.31 -6.77 -30.51 -0.20 -0.90 

Tree cover 129.68 19.39 96.36 14.41 -33.32 -25.69 -0.98 -0.76 

Cropland 39.73 5.94 33.45 5.00 -6.28 -15.81 -0.18 -0.46 

Shrubland 426.47 63.75 402.31 60.18 -24.16 -5.67 -0.71 -0.17 

Bare land 26.65 3.98 21.62 3.23 -5.03 -18.87 -0.15 -0.56 

Built up 24.22 3.62 99.34 14.86 75.12 310.16 2.21 9.12 

Total 668.94 100 668.94 100     
  

4.4. Prediction of LCLU in 2040 

MOLUSCE was used to simulate future land uses based on existing LCLU patterns and dynamics. 

The model was calibrated using the spatial variables parameters such as the DEM, slope, distance 

from rivers and streams, and distance from major roads (Figure 12). These parameters were 

selected based on their relatively strong association with the LCLU categories (Muhammad et al., 

2022). The CA-ANN approach was used for transition potential modelling (training the classifier 

using 2022 data) and the prediction of future LCLU for 2040.  

The LCLU map for 2022 was simulated using the data from the spatial variables and the 

information from the LCLU maps of 1988 and 2002 (transition probabilities) as inputs. Before 

validating the model, the simulated and actual LCLU maps for 2022 (Figure 13) were compared 

using their Kappa coefficients. The overall Kappa coefficient for the simulated LCLU of 2022 was 

0.87 (88.4% overall accuracy), while that for the actual LCLU map of 2022 was 0.93 (94.0% 

overall accuracy), hence, indicating a high level of agreement.  
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Figure 12. Spatial variables for the CA-ANN model 

 

Figure 13. Actual and simulated LCLU maps for 2022 
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The same information used to simulate the 2022 map was used to predict the 2040 map (Figure 

14). From the data presented in Table 17, bare land occupied 21.62 km2 (3.23%) of the total land 

area in 2022 and was expected to occupy 23.05 km2 (3.44%) by 2040. Similarly, the built-up 

LCLU category occupied 99.34 km2 (14.86%) in 2022 and was expected to expand to 111.40 km2 

(16.65%) by 2040. With the current high population growth rates of villages surrounding Gaborone 

city, such as Tlokweng (3.8%), Oodi (5.7%), Modipane (8.7%), and Gabane (2.6%) (Statistics 

Botswana, 2022), expansion in built-up areas was certain by 2040 to accommodate the growing 

population. However, tree cover and cropland occupied 96.36 km2 and 33.45 km2 in 2022, 

respectively, and were expected to occupy 78.56 km2 and 20.16 km2 by 2040 (Table 17). The water 

body was likely to be the most stable LCLU class by 2040.  

Table 17. Area Statistics for the changes in LCLU categories from 2022 to 2040 

LCLU 

category 

LCLU 2022 LCLU 2040 Change Rate of change 

Area 

(Km2) 

Area 

(%) 

Area 

(Km2) 

Area 

(%) 

Area 

(Km2) 

Area 

(%) 

Area 

(Km2/year) 

Area 

(%/year) 

Water bodies 15.42 2.31 15.41 2.30 -0.01 -0.06 0.00 0.00 

Tree cover 96.36 14.41 78.56 11.74 -17.80 -18.47 -0.99 -1.03 

Cropland 33.45 5.00 20.16 3.01 -13.29 -39.73 -0.74 -2.21 

Shrubland 402.31 60.18 420.38 62.84 18.07 4.49 1.00 0.25 

Bare land 21.62 3.23 23.03 3.44 1.41 6.52 0.08 0.36 

Built up 99.34 14.86 111.40 16.65 12.06 12.14 0.67 0.67 

 

 

Figure 14. LCLU map for 2022 (Actual) and 2040 (Predicted) 
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4.4.1. Change detection between 2022 and 2040 

Figure 15 depicts LCLU types in the study area following LCLU change over a period of 18 years. 

The black region represents areas that did not change. From the results presented in Table 18, it is 

expected that by 2040, 3.15 km2 and 11.94 km2 of shrubland will be converted to bare land and 

built-up areas, respectively. Also, the built-up LCLU type will gain a total of 11.46 km2, while tree 

cover and cropland will lose 21.99 km2 and 12.72 km2 of coverage, respectively, to shrubland 

(Figure 16). Between 2022 and 2040, the net loss in tree cover and cropland will be 17.80 km2 and 

13.29 km2, respectively, due to forest clearing and crop field abandonment (as a result of low crop 

yields caused by climate variability). The fastest rate of change will be observed in the tree cover 

LCLU type (0.99 km2/year), which may be due to increased demand for forest products.  

Table 18. LCLU change matrix for 2022 – 2040 

L
C

L
U

 2
0

2
2
 

LCLU 

Category 

LCLU 2040 

Water 

bodies 

Tree 

cover 

Cropla

nd 

Shrub 

land 

Bare 

land 

Built-

up 

losses 

(km2) 

losses 

(%) 

Water bodies 15.37 0.01 0.00 0.06 0.01 0.01 0.09 0.56 

Tree cover 0.00 71.82 0.00 21.99 0.54 1.55 24.08 25.11 

Cropland 0.00 0.27 19.81 12.72 0.05 0.53 13.56 40.65 

Shrubland 0.01 4.84 0.31 381.78 3.15 11.94 20.25 5.04 

Bare land 0.00 0.46 0.01 1.21 18.79 0.77 2.46 11.56 

Built up 0.00 1.01 0.00 1.87 0.45 96.41 3.33 3.34 

Gains (km2) 0.01 6.60 0.32 37.85 4.19 14.79 
 

 
Gains (%) 0.09 8.41 1.60 9.02 18.23 13.30   

 

From Figure 16, there will be food security issues in the built-up due to a reduction in cropland. 

However, food security issues in the urban area are evitable as food usually comes from outside 

the city limits. Therefore, proper infrastructure is needed to facilitate the supply of food to the city 

in order to achieve food security (SDG 2). Loss of tree cover will disrupt the carbon cycle and 

subject the area to a new climate. 
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Figure 15. Changes in LCLU classes between 2022 and 2040 

 

Figure 16. Gains and losses in LCLU types between 2022 and 2040 
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4.5. Analysis of SOC Stock 

4.5.1. Variation of Soil Parameters with LCLU Types 

The mean values of soil parameters in the major LCLU types in the study area are presented in 

Table 19. The table also includes Post hoc LSD multiple comparison results, which test whether 

or not significant differences exist in values of soil parameters across different LCLU types. 

Table 19. Variation of Bulk density, SOC content, pH and Texture in different LCLU types. 

LCLU types BD (g/cm3) SOC (%) pH Sand (%) Silt (%) Clay (%) 

Bare land 1.56 ± 0.14a 0.32 ± 0.26d 7.64 ± 0.90a 72.59± 11.85a 14.24 ± 5.87ab 13.18 ± 7.55a 

Built-up 1.55 ± 0.11a 0.42 ± 0.19d 7.44 ± 0.98a 69.90 ± 6.14ab 14.75 ± 3.45ab 13.85 ± 4.90a 

Cropland 1.50 ± 0.08ab 0.93 ± 1.04c 6.29 ± 0.59b 70.89 ± 15.46ab 12.67 ± 4.45b 16.84 ± 12.28a 

Shrubland 1.44 ± 0.06b 1.40 ± 0.68b 5.82 ± 0.54bc 68.33 ± 12.49ab 14.00 ± 5.77ab 18.78 ± 8.55a 

Tree cover 1.35 ± 0.11c 2.46 ± 1.00a 5.36 ± 0.13c 62.77 ± 18.24b 17.46±6.48a 20.25 ± 14.96a 

p-value 0.000*** 0.000*** 0.000*** 0.319 0.162 0.441 

F (4, 81) 11.46 17.09 25.959 1.196 1.683 0.947 

Note: Values are shown as mean ± standard deviation. Means with the same letter in each column are not significantly 

different (P < 0.05). *** indicates that a significant difference exists at p < 0.05 

From the data presented in Table 19, it can be deduced that significant differences existed in soil 

parameters within the 0 – 30 cm soil depth (except for the clay fraction) in the different LCLU 

classes in the study area. These results suggest that LCLU is a key determinant of soil parameters. 

We could not have found this difference if geology, climate, and soil type were significant factors 

for change in these parameters. A detailed analysis of each of the properties is given below.  

4.5.1.1. Bulk Density 

Soil bulk density varied across the different LCLUs (Figure 17). From the results presented in 

Table 19, the soil bulk density (BD) in bare land (1.55 ± 0.11g/cm3) was significantly higher than 

that in built-up, cropland, shrubland and tree cover LCLU type (p < 0.001), but not significantly 

different from that in built-up and cropland. Also, the soil bulk density in cropland was 

significantly higher than that of shrubland and tree cover but not significantly different from that 

in shrubland (p < 0.001). The higher bulk density in cropland compared to shrubland and tree cover 

could be attributed to increased soil organic matter decomposition rates due to agricultural 

activities such as tillage. Tillage without crop residue disrupts soil structure, resulting in the loss 
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of soil organic matter and compaction of the surface soil stratum (Gebrehiwot, 2021). Furthermore, 

the use of heavy machinery contributes to soil compaction, which increases soil density. The 

higher bulk density in shrubland than in tree cover may be due to soil compaction caused by animal 

trampling during grazing, since livestock grazing on communal pasture lands is legal. The lowest 

bulk density in tree cover compared to other LCLU types may be attributed to the high SOC 

content, which increases soil volume without affecting its weight. The findings were consistent 

with the findings of previous studies conducted globally (for example, Don et al., 2010; Shi et al., 

2013; Yimer et al., 2007; Haile et al., 2014; Chia et al., 2020). 

 

Figure 17. Variation of Bulk density in different LCLU types in the study area. 

4.5.1.2. Soil pH 

Analysis of variance (ANOVA) and LSD Post hoc results showed a significant difference (p < 

0.001) in soil pH in different LCLU classes in the study area. The pH of soil under tree cover was 

found to be significantly lower than that of shrubland, cropland, built-up land, and bare land, but 

not significantly different from that of shrubland (Table 19 and Figure 18). The lower soil pH in 

tree cover and shrubland compared to cropland, built-up, and bare land soils could be attributed to 

the decomposition of more available organic matter (for example, leaf litter), resulting in the 

production of hydrogen ions (H+) that lowered the soil pH (Ali et al., 2017). The soil pH results 

obtained in this study were similar to those obtained by Huesken et al. (1989) in the Botswana Soil 

Service and Advisory Project in the South East District in 1989 (Table 2). 
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Figure 18. Variation of pH in different LCLU types in the study area. 

4.5.1.3. Soil Texture 

Soil particle size distribution for the various LCLU types in the study area was also examined 

(Figure 19). The sand fraction under tree cover was found to be lower than that in other LCLU 

types (p > 0.05) but was not significantly different from that in shrubland, cropland, and built-up 

(Table 19). Silt fraction was higher under tree cover and was significantly different from that in 

the other LCLU types. The clay fraction in tree cover was higher than in the other LCLU types but 

was not significantly different from that in shrubland and cropland. The high clay and silt content 

in tree cover could be attributed to the chemical weathering of the soil due to its high acidic content.  

 

Figure 19. Variation of particle size in different LCLU types in the study area 

Based on the USDA soil classification system, the findings of this study revealed that sandy loam 

soil dominates the study area (Figure 20). 
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Figure 20. Distribution of soil texture classes in Greater Gaborone 

4.5.1.4. SOC Content 

SOC content varies significantly across the different LCLUs (Figure 21). Analysis of variance 

(ANOVA) and Post hoc multiple comparisons showed that there was a significant difference in 

SOC content in different LCLU types (p < 0.001). Differences in SOC content in different LCLUs 

supported the hypothesis that different LCLUs have different SOC content. The difference was 

very strong between bare land (0.32 ± 0.26 %) and tree cover (2.46 ± 1.00%). SOC content was 

significantly higher in soils under tree cover (2.46 ± 1.00%) and shrubland (1.40 ± 0.68%) 

compared to cropland (0.93 ±1.04%), built-up (1.95 ± 0.88%) and bare land (0.32 ± 0.26%) (Table 

19). Also, the SOC content in built-up was higher than in bare land but not significantly different.  

The significantly higher SOC content in tree cover and shrubland compared to the other LULU 

classes indicated that there was more supply of litter or return of organic matter to the soil. 

However, frequent removal of biomass and crop residues from cropland during harvesting and 

continuous tillage could be the primary reasons for low SOC content in cropland compared to 

shrubland and tree cover. Furthermore, continuous tillage or ploughing exposes available SOC to 

moisture, aeration, and other decomposing agents, allowing for the rapid decomposition of 

available organic sources, and resulting in the reduction of SOC content (Gebrehiwot, 2021). 

Similar findings were reported in studies conducted in the southern part of Ethiopia by Hailu et al. 

(2000) and Temesgen et al. (2014). These authors found that the SOC content of forest soils was 

significantly higher than that of open crop fields.  
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Figure 21. Variation of SOC in different LCLU types in the study area 

This result, therefore, indicated that soil under tree cover and shrubland were good sequesters of 

carbon in Greater Gaborone. The spatial distribution of SOC content in Greater Gaborone is 

depicted in Figure 22, with the mean SOC content being 0.84%.  

 

Figure 22. Spatial distribution of SOC in Greater Gaborone 
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In comparison to other Sub-Saharan regions with similar ecosystem characteristics, the mean SOC 

content in Greater Gaborone was found to be lower than that of Johannesburg (South Africa) and 

the Birr watershed (Ethiopia). It was, however, slightly higher than in Central Zimbabwe and 

Central Namibia. (Table 20).  

Table 20. SOC content in Greater Gaborone compared to similar ecosystems around the Sub-

Saharan African regions 

Region SOC (%) Reference 

Birr (Ethiopia) 2.55 Amanuel et al., 2018 

Johannesburg 1.33 Seboko et al., 2021 

Central Zimbabwe 0.68 Nyamadzawo et al., 2008 

Central Namibia 0.39 Nghalipo et al., 2019 

Greater Gaborone 0.84 This study 

 

4.5.2. Relationship of SOC with Soil Parameters 

4.5.2.1. SOC and Bulk Density 

Many soil factors influence bulk density, one of which is SOC content (Chaudhari et al., 2013). 

Soils with a higher organic carbon content have a lower bulk density (Ali et al., 2017), indicating 

that the soil is less compacted. This study found a negative relationship between soil bulk density 

and SOC content (R2 = 0.995) (Figure 23). For instance, the soil under tree cover with a bulk 

density of 1.35 ± 0.11 g/cm3 had SOC content of 2.46 ± 1.00%, whereas soil under bare land with 

a bulk density of 1.56 ± 0.14 g/cm3 had a SOC content of 0.32 ± 0.26 %) (Table 19). The negative 

relationship between bulk density and SOC content found in this study was consistent with the 

findings of several studies conducted globally (for example, Dhakal et al., 2010; Chaudhari et al., 

2013; Ali et al., 2017). This could be explained by the fact that SOC contains a food source for 

soil organisms, which aids in the breakdown of large and heavy soil aggregates into smaller, more 

nutritious, and lighter aggregates that are more stable. Also, soil compaction can inhibit SOC 

accumulation because it negatively affects soil aggregates by limiting enzyme access to the 

materials within the soil aggregates and physically maintaining soil organic matter (Kasper et al., 

2009; Chia et al., 2020).  
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Figure 23. Relationship between SOC content and soil bulk density 

4.5.2.2. SOC Content and pH 

This study found a negative relationship between soil pH and SOC content (R2 = 0.8699) (Figure 

24). Several studies have found that oxidation of organic matter (for example, leaf litter) produces 

organic acids in the soil solution, causing a decrease in soil pH (Ali et al., 2017; Wainkwa Chia et 

al., 2017). Higher acidity generally inhibits microbial activity and reduces mineralization, 

resulting in a higher accumulation of SOC (Kemmitt et al., 2006). 

 

Figure 24. Relationship between SOC content and soil pH 

Low pH favours SOC accumulation because the bacteria or organisms most responsible for 

breaking down the organic matter experience a sharp drop in activity once the pH falls below 
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6.0 (Zhou et al., 2019). This explains the significantly higher SOC content in tree cover (2.46 ± 

1.00%) and shrubland (1.40 ± 0.68%) with pH of 5.36 ± 0.13 and 5.82 ± 0.54, respectively, 

compared to the low SOC content in bare land (0.32 ± 0.26) with high a pH (7.64 ± 0.90). 

Furthermore, Low pH (acidic) has the tendency to mechanically weather soil particles (Wainkwa 

Chia et al., 2017), thus, explaining the higher clay content in soils of tree cover and shrubland 

LCLU types than in bare land and built-up LCLU types (Table 19). 

4.5.2.3. SOC and Soil Texture  

The soil particle size fractions except sand showed a positive relationship with SOC content in the 

study area (Figure 25).  

 

Figure 25. Relationship between SOC content and soil texture 

This result was consistent with the findings of several studies conducted globally (for example, 

Kasper et al., 2009; Razafirmbelo et al., 2013; Dikinya et al., 2016; Ali et al., 2017; Zhou et al., 

2019). 
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Clay and silt positively correlate with SOC content because they help to stabilize soil organic 

matter (Razafirmbelo et al., 2013; Zhou et al., 2019). The relationship between SOC content and 

soil texture has been linked to the chemical stabilization of SOC through the physicochemical 

adsorption of SOC on clay soil/mineral surfaces (Feller & Beare, 1997). This relationship 

demonstrated that clayey soils have a greater potential for SOC storage than sandy soils (Neto et 

al., 2010). This explains why the soil under tree cover had a significantly higher SOC content than 

the other LCLU types.  

4.5.3. SOC Stock in Stable and Changed LCLU Types 

4.5.3.1. SOC stock in areas without LCLU change 

The total SOC stock in areas that did not experience LCLU change between 1988 and 2022 was 

estimated to be 1,861,477.2 tC (tonnes of carbon) or 1.86 MtC (megatonnes of carbon). The 

shrubland LCLU type with a total cover area of 304.87 km2 stored 1,600,572.88 tC or 1.6MtC 

(85.98% of the total SOC stock in the area), whereas bare land (BL) with a total cover area of 0.32 

km2 stored 252.43 tC (0.01% of the total SOC stock in the area). Even though the SOC stock per 

unit area was higher in tree cover (11.69 kgC/m2) than in shrubland (5.25 kgC/m2), shrubland 

stored 85.89% of the total SOC stock in the area due to its large area coverage (Table 21). The 

mean SOC content of cropland was estimated to be 0.29%. This result fell within the range of SOC 

values (0.1 to 0.3%) determined by Huesken et al. (1989) in cropland in the South East District of 

Botswana in 1989 (Table 2). 

Table 21. Mean soil bulk density, SOC content and total SOC Stock in different LCLUs in Greater 

Gaborone between 1988 and 2022. 

LCLU 

Type 

Area 

(km2) BD (g/cm3) SOC (%) 

SOC Stock 

(kgC/m2) 

Total SOC stock 

(tC) in LCLU type 

% total SOC 

in LCLU type 

Bare land 0.32 1.67 ± 0.14 0.16 ± 0.13 0.80 ± 0.65 252.43 0.01 

Built-up 27.05 1.53 ± 0.09 0.27 ± 0.06 1.21 ± 0.24 32 727.30 1.76 

Cropland 5.01 1.49 ± 0.02 0.29 ± 0.08 1.31 ± 0.38 6 560.41 0.35 

Shrubland 304.87 1.43 ± 0.05 1.23 ± 0.44 5.25 ± 1.93 1 600 572.88 85.98 

Tree cover 18.94 1.27 ± 0.07 3.09 ± 0.76 11.69 ± 2.48 221 364.18 11.89 

Total  356.18       1 861 477.20 100. 

Note: BD and  SOC are expressed in mean and standard deviation 
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4.5.3.2. SOC Stock in areas with LCLU Change 

The total SOC stock in areas affected by the LCLU change was estimated to be 777,479.34 tC or 

0.78 MtC. TC – SL, with a total area of 57.87 km2 stored 440,397.08 tC (56.64% of the total SOC 

stock in the area), while SL – BL, with an area of 15.4 km2, stored 36,190.34 km2 (4.65% of the 

total SOC stock in the area) (Table 22). Furthermore, SL – BU, with an area coverage of 66.13 

km2, stored 170,606.91 tC (21.94% of the total SOC stock in the area), while SL – CP, with an 

area coverage of 24.4 km2, stored 130,285.01 tC (16.76% of the total SOC stock in the area). 

Table 22. Mean SOC Stock and total stock for different LCLUs in areas affected by LCLU change 

during the study period. 

LCLU 

type 

Changed 

Area (km2) BD (g/cm3) SOC (%) 

Mean SOC 

Stock (kgC/m2) 

Total SOC 

stock (tC) in 

LCLU type 

% total 

SOC in 

LCLU type 

SL - BL 15.40 1.54 ± 0.08 0.51 ± 0.29 2.35 ± 1.36 36 190.34 4.65 

SL-BU 66.13 1.54 ± 0.12 0.57 ± 0.36 2.58 ± 1.54 170 606.91 21.94 

SL-CP 24.40 1.45 ± 0.09 1.18 ± 1.14 3.14 ± 5.04 130 285.01 16.76 

TC-SL 57.87 1.38 ± 0.06 1.85 ± 0.80 7.61 ± 3.17 440 397.08 56.64 

 Total 163.80    777 479.34 100.00 

Note: SL – BL = shrubland to bare land, SL – BU = shrubland to built-up, SL – CP = shrubland to cropland and TC – 

SL = tree cover to shrubland. 

The SOC stock in the study area was estimated to be 4.36 MtC, with tree cover accounting for 1.13 

MtC (25.87%), shrubland 2.83 MtC (64.86%), cropland 0.14 MtC (3.24%), built-up 0.22 MtC 

(5.11%), and bare land 0.04 MtC (0.92%) as shown in Table 23. 

Table 23. Total SOC stock in the different LCLUs in the study area 

LCLU type Area (km2) 

SOC stock 

(kgC/m2) 

Total SOC Stock (MtC) 

in LCLU type 

% total SOC stock 

in LCLU type 

Bare land 21.63 1.86 0.04 0.92 

Built-up 99.41 2.24 0.22 5.11 

Cropland 33.47 4.22 0.14 3.24 

Shrubland 402.57 7.02 2.83 64.86 

Tree cover 96.42 11.69 1.13 25.87 

  653.50  4.36 100.00 
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4.5.4. Effects of LCLU change on SOC Stock 

The effect of LCLU change on SOC stock was examined by assessing the change in SOC stock 

following LCLU conversion. It was assumed that the current SOC stock in the area with no LCLU 

change was the same stock that existed in 1988. The most significant LCLU conversions observed 

during the study period were the conversion of tree cover to shrubland and the conversion of 

shrubland to cropland, built-up, and bare land (Table 24). 

Table 24. Change in SOC stock following LCLU conversion between 1988 and 2022 

1988 2022 Change in SOC Stock 

LCLU type  SOC stock (kgC/m2) LCLU type SOC Stock (kgC/m2) kgC/m2 % 

Shrubland 5.25 Bare land 2.35 -2.9 -55.24 

Shrubland 5.25 Built-up 2.58 -2.67 -50.86 

Shrubland 5.25 Cropland 3.14 -2.11 -40.19 

Tree cover 11.69 Shrub land 7.61 -4.08 -34.90 

It was found that converting from tree cover to shrubland resulted in a 34.9% (4.08 kg C/m2) loss 

of SOC stock. This result was consistent with the findings of previous studies conducted globally, 

which found that 20 to 50 % of SOC stock is lost when a natural forest is converted to another type 

of cover or use (Don et al., 2010; Guo & Gifford, 2002; Murty et al., 2002; Wei et al., 2014). 

Similarly, the conversion of shrubland to bare land, built-up, and cropland resulted in 55.24% (2.9 

kg C/m2), 50.86% (2.67 kgC/m2), and 40.19% (2.11 kgC/m2) loss of SOC stock, respectively. The 

change in SOC stock following LCLU conversion supports the hypothesis that changes in LCLU 

bring about changes in SOC stock. The 55.24% loss in SOC stock when shrubland is converted to 

cropland is slightly lower than the result (-59%) reported in the global meta-analysis by Guo and 

Gifford (2002). From the results, it can be deduced that the conversion of tree covers or shrubland 

to other uses reduces SOC stock in the study area. The loss of SOC from an ecosystem is one of 

the primary contributors to rising levels of greenhouse gas concentrations (such as CO2) and 

climate change (IPCC, 2014). Furthermore, the reduction in SOC stock has a negative impact on 

soil fertility, which in turn negatively impacts biomass productivity and food security. However, 

the conversion of bare land, built-up or cropland to shrubland or tree cover can enhance SOC 

accumulation.  



 

85 
 
 

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions  

This study focused on assessing the LCLU change effects on the SOC stocks in Greater Gaborone 

between 1988 and 2022. The supervised classification method based on a Maximum Likelihood 

classifier was used to classify Landsat images of 1988 and 2002 and Sentinel-2 images of 2022, 

downloaded from the USGS website (www.usgs.gov). Six major LCLU types (water body, tree 

cover, cropland, shrubland, bare land, and built-up) were identified in the study area. The overall 

classification accuracies for the 1988, 2002 and 2022 images were 85.8%, 86.1% and 94.0%, with 

Kappa coefficients of 0.83, 0.83 and 0.93, respectively. The Post Classification Comparison (PCC) 

approach was used to detect the LCLU changes that had happened during the study period (1988 

– 2022).  Overall, a significant gain in area coverage was observed for the built-up class, 75.12 

km2 (310.16%), while significant losses were observed for the shrub land class, 24.16 km2 (5.67%) 

and the tree cover class, 33.32 km2 (25.69%). The results of the predicted LCLU for 2040 using 

MOLUSCE revealed that tree cover and cropland classes will shrink while shrubland, bare land 

and built-up classes will increase, indicating the need for proper land use management strategy to 

be put in place to avoid land degradation and possible loss of biodiversity. 

It was also found that LCLU type has a significant influence on SOC content, soil bulk density, 

pH, and texture. The SOC content was found to have a negative correlation with soil bulk density, 

pH and sand fraction. However, LCLU correlates positively with clay and silt content. Soil organic 

carbon content was found to be higher in the tree cover class than in the other LCLU types. The 

total SOC stock in the study area was estimated to be 4.36 MtC, with the shrubland LCLU type 

accounting for 64.86% (2.83 MtC), mostly due to the spatial extent of this class. Furthermore, it 

was also found that the LCLU conversion had a significant impact on the SOC stock in the study 

area between 1988 and 2022. The conversion of tree cover to shrubland resulted in a 34.9% (4.08 

kg C/m2) loss of SOC stock from the study area. Also, the conversion of shrubland to cropland, 

built-up or bare land resulted in 55.24% (2.9 kgC/m2), 50.86% (2.67 kgC/m2), or 40.19% (2.11 

kgC/m2) loss of SOC stock, respectively. The predicted future LCLU change between 2022 and 

2040 shows that tree cover will shrink by 17.8 km2, indicating that more SOC will be lost from the 

study area in the future.  

http://www.usgs.gov/
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5.2. Recommendations 

It is recommended that: 

1. Appropriate land management strategies, such as conservation agricultural operations, 

should be encouraged; overgrazing and the conversion of natural vegetation to other land 

uses should be discouraged. 

2. Stakeholders should make greater efforts to raise public awareness about the importance 

of environmental protection in order to mitigate the threat of natural vegetation loss, SOC 

stock depletion, and greenhouse gas increases. 

5.3. Suggestions for future study 

It is suggested that: 

1. A similar study should be conducted in the future (for example, after 10 years) using the 

current study results as a reference in order to obtain more accurate results for changes in 

SOC content following LCLU changes. 

2. Research on SOC loss due to soil erosion, mineralization, and decomposition should be 

conducted in the study area to improve our understanding of the mechanisms of SOC stock 

changes, as this study did not determine how much SOC was lost in each of the LCLU 

types due to these factors. 

3. Other methods, such as the Bare Soil Index (BSI) or Normalized Difference Vegetation 

Index (NDVI), should be used to estimate the SOC in the study area in order to compare 

the results and determine which method produces the most reliable results. In an attempt 

to estimate SOC content using the NDVI method, the study found a positive correlation 

between estimated SOC and NDVI (R2 = 0.9123) and thus suggested the following 

equation for estimating SOC stock: 

 𝑺𝑶𝑪 = −𝟎. 𝟎𝟎𝟖𝟐 + 𝟎. 𝟏𝟖𝟒𝟔 ∗ 𝑵𝑫𝑽𝑰     (19) 

 

Where SOC is the Soil Organic Carbon content (%) and NDVI is the Normalized Difference 

Vegetation Index of a given pixel. 
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